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APPLICATION OF GARCH MODELS...

The development of econometrics led to the inventi-
on of adaptive methods for modelling the mean value of
the variable in question, the most widely used of which
are the ARIMA methods (Box and Jenkins, 1970) and
methods derived from them. The GARCH (Generalised
Autoregressive Conditional Heteroskedasticity) method
is one of the techniques based on the assumption that
the random component of the model shows changes in
variability. It was developed in a simplified form by
Engle (1982) and later generalised by Bollerslev
(1986). The model was applied successfully in model-
ling the changing variability (or volatility) of the variable
in time series, with the applications being taken in large
measure from the area of financial investments. After
identifying an asymmetric relationship between conditi-
onal volatility and conditional mean value, the econo-
metrists focused their efforts on the design of methods
for the modelling of this phenomenon.

Nelson (1991) proposed an exponential GARCH

(EGARCH) model, based on a logarithmic expression of
the conditional variability in the variable under analysis.
Later, a number of modifications were derived form this
method. One of them is the TARCH method (Threshold
ARCH), which was introduced by Zakoian (1994). Prac-
tical experience in this area was described by Bollerslev,
Chou and Kroner in full detail (1992). The application of
the GARCH model in the conditions of the Czech capi-
tal market was studied by Hančlová (2000).

The purpose of this article is to quantify the afore-
mentioned three models, using the values of the Slovak
Share Index (SAX) from the period 1 August 1997 to 27
September 2002, representing 1,173 observations. The
first 1,000 values were used for the quantification and
statistical verification of the model, and the last 173 for
the demonstration of a forecast ex post.

SAX index returns follow a martingale

If the value of the stock market index
at time t is marked Pt, the return of the
index at time t is given by the following
equation:

rt = ln(Pt /Pt –1).

We assume that stock market index
returns follow a martingale process,
i.e. they can be modelled with the help
of the following equation:

rt = µ + et,

where µ is the mean value of the
return, which is expected to be zero; et
is a random component of the model,
not autocorrelated in time, with a zero
mean value.2 Sequence et et may be
considered a stochastic process,
expressed as:

et = zt + δt,
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Fig. 1  The first thousand values of the SAX index observed
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Fig. 2  The first thousand observations of the returns of SAX time series.
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2A more frequently used form of this
equation is: ln(Pt) = ln(Pt–1) + et
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where zt is a stochastic variable not autocorrelated in
time, with a standardised normal distribution. δt is the con-
ditional variance of returns at time t, the changes of which
will be modelled by means of the presented models.

The GARCH model

The GARCH method has a wide range of capital
markets applications. The model is based on the
assumption that forecasts of variance changing in time
depend on the lagged variance of capital assets. An
unexpected increase or fall in the returns of an asset at
time t will generate an increase in the variability expec-
ted in the period to come.

A general GARCH (p, q) model is given by the follo-
wing equation:

2 q    2 p     2σt = a + Σbiet–i + Σ cjσt–j + wt,i=1 j=1

where p is the degree of GARCH; q is the degree of
the ARCH process; and wt a random component with
the properties of white noise. Since the equation
expresses the dependence of the variability of returns
in the current period on data (i.e. the values of the vari-
ables et

2
–i a δt

2
–j) from previous periods, we denote this

variability as conditional.
In determining the degrees p, q (i.e. identifying the

model), we make use of the fact that the identification
of GARCH is based, from the methodological point of
view, on the same principles as the ARMA method (see
Box-Jenkins, 1970), while the degrees p, q are identifi-
ed by means of the autocorrelation function and a par-
tial autocorrelation function of the square of residues.
The basic and most widespread model is GARCH (1,1),
which can be expressed as:

2 2 2σt = a + bet–1 + cσt–1 + wt.

As the variance is expected to be positive, we expect
that the regression coefficients a, b, c are always posi-
tive, while the stationarity of the variance is preserved,
if the coefficients b and c are smaller than 1.0.

The conditional variability of the returns defined in (3)
is determined by three effects:
1. the constant part, which is given by the coefficient a;
2. the part of variance expressed by the relationship

bet
2
–1 and designated as ARCH component;

3. the part given by the predicted variability from the
previous period and expressed by the relationship
cδt

2
–1. This component is termed as GARCH.

The sum of regression coefficients (b + c) expresses
the influence of the variability of variables from the pre-
vious period on the current value of the variability. This
value is usually close to 1.0, which is a sign of increa-

sed inertia in the effects of shocks on the variability of
returns on financial assets.

Asymmetric effect  

The principal disadvantage of the GARCH model is
its unsuitability for modelling the frequently observed
asymmetric effect, when a different volatility is recorded
systematically in the case of good and bad news. In the
case of martingale models, falls and increases in the
returns can be interpreted as good and bad news. If a
fall in returns is accompanied by an increase in volatili-
ty greater than the volatility induced by an increase in
returns, we may speak of a ‘leverage effect’. This idea
is illustrated in Fig. 3. Suitable instruments for the
modelling of an asymmetric affect are the TARCH and
EGARCH models.

The TARCH model

The TARCH model is an asymmetric model. Its basic
variant is TARCH(1,1), which is expressed by an equa-
tion for the modelling of a conditional variance:

2 2 2 2σt = a + bet–1 + cσt–1 + det–1ξt–1 + wt,

where 
a) ξt–1 = 1, if et–1 < 0,
b) ξt–1 = 0, if et–1 > 0.

The model is based on the assumption that unexpected
(unforeseen) changes in the returns of the index rt
expressed in terms of et, have different effects on the con-
ditional variance of stock market index returns. An unfo-
reseen increase is presented as good news and contri-
butes to the variance in the model through multiplicator b.
An unforeseen fall, which is a piece of bad news, genera-
tes an increase in volatility through multiplicator b+d. The
asymmetric nature of the returns is then given by the non-
zero value of the coefficient d, while a positive value of d
indicates a ‘leverage effect’.
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Fig. 3 Leverage effect – the reaction of volatility to good
and bad news
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The EGARCH model

In this model, the conditional variance may be
expressed as follows:

2 2 et–1 et–1ln(σt ) = a + bln(σt–1) + c –––– + d |–––– |+ wt.σt–1 σt–1

The form of the equation indicates that conditional
variance is an exponential function of the variables
under analysis, which automatically ensures its positive
character. The exponential nature of EGARCH ensures
that external unexpected shocks will have a stronger
influence on the predicted volatility than TARCH. An
asymmetric effect is indicated by the non-zero value of
c and the presence of a ‘leverage effect’ is shown by its
negative value.

Test for a martingale process

The results obtained from the quantification of equa-
tion (1) are shown in Table 1.

The mean value of returns µ does not deviate signifi-
cantly from zero in statistical terms, hence the coeffici-
ent of determination will also have a zero value. The
absence of autocorrelation in random components et is
indicated by the value of Durbin-Watson statistics,
which is close to 2.0 (an insignificant value). Autocorre-
lation was not even shown by the individual members of
the estimated autocorrelation function given by Ljung-
Box statistics, with none of them being statistically sig-

nificant. On the contrary, in a test for the presence of
heteroskedasticity of residuals, where we used an esti-
mate of an autocorrelation function of the square of
residuals, a statistically significant shift of 5 periods was
recorded, which allows us to speak of the variability
shown by random components. At a one-percent level of
significance, the estimated model showed a deviation
from the normal distribution of random components et.

Quantification and verification of models 
of a conditional variance 

The results of estimation and statistical verification of
GARCH(1,1), TARCH(1,1), and  EGARCH(1,1) models
are shown in Table 2. The results indicate that the
GARCH components of the variance are statistically sig-
nificant in all three models. In the case of the regression
coefficient b in the TARCH model, this coefficient has a
negative value, which may lead to a negative conditional
variance at certain values of the variables in equation
(4). The sum of the coefficients (b + d) in the case of
GARCH is close to 1.0, which is a sign of inertia in the
development of the conditional variance. The existence
of a ‘leverage effect’ was confirmed in the case of both
asymmetric models. This indicates that, of the properti-
es analysed above, the best results are achieved with
the EGARCH model, which, unlike GARCH models
asymmetric effects, without being exposed to the dan-
ger of having to predict a negative variance.

Forecasting the volatility of the SAX index 
ex post

The last 173 observations in the time series of SAX
were used for an ex-post forecast, with the main focus on
the forecast of volatility. The graphs for the period under
analysis indicate that the interval estimate of returns
made at a level of reliability of 67 percent is not constant
in the case of all the three models and takes into account
the changing variance of the variable in question. This
means that, unlike classical approaches based on the
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Statistics

µ 0.000193
Durbin – Watson 2.017521
Coefficient of determination 0.000000
Sum of squares of residuals 0.255457

LAG of statistically significant 
autocorrelation
Ljung – Box *** –

Ljung – Box ** –

Ljung – Box * –

LAG of statistically significant 
heteroskedasticity
Ljung – Box *** –

Ljung – Box ** –

Ljung – Box * 5

Normality
Jarque – Berra 1342.749***

Tab. 1 Results of regression modelling the martingale
nature of the mean value of SAX index returns

Statistics GARCH(1,1) EGARCH(1,1) TARCH(1,1)

µ 0.000395 -0.000161 -6.20E-05

a 2.87E-05*** -1.119736*** 4.60E-05***

b 0.089354*** 0.874512*** -0.021041**

c 0.805020*** -0.109250*** 0.758276***

d – 0.110361*** 0.182597***

Tab. 2 Quantification and statistical verification of
GARCH, TARCH, and EGARCH models

(* means ten, ** five, and *** one-percent level of significance)

(* means ten, ** five, and *** one- percent level of significance)

(5)
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assumption of a constant variance of random compo-
nents, the EGARCH, GARCH, and TARCH models react
to the actual changes in the volatility of the returns.

Conclusion

In conclusion, we may say that the Slovak Share
Index (SAX) follows a martingale process. The variabili-
ty of its conditional variance can be modelled by means
of TARCH, GARCH, and EGARCH models. The best
results were achieved with the EGARCH model. In the
period under review, the existence of an asymmetric
effect (which was connected with a ‘leverage effect’) was
confirmed. In future, these results can be extended to
include those of other variants of the GARCH model,
and the proposed methodology may be used for the
evaluation of option prices as well.
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Fig. 4  Ex-post forecast of the volatility of SAX index returns


