Financial Globalisation, Monetary Policy Spillovers and Macro-Modelling: Tales from 1001 Shocks

Georgios Georgiadis* Martina Jančoková*

* European Central Bank

National Bank of Slovakia conference "Monetary Policy Challenges from a Small Country Perspective" Bratislava, 23/11/2016

The views expressed in the paper are those of the authors and not those of the ECB or of the ESCB.

Motivation

• Dramatic rise of financial globalisation since 1990s

 Growing potential for (monetary policy) spillovers Kim (2001); Canova (2005); Dedola et al. (2015); Feldkircher and Huber (2015); Georgiadis (forthcoming)

Global financial cycle hypothesis Bekaert et al. (2013); Bruno and Shin (2015); Passari and Rey (2015); Rey (2015)

Parallel evolution of structural macro-modelling

- New Keynesian DSGE models Smets and Wouters (2003); Christiano et al. (2005)
- ► Global financial crisis spurred work on financial frictions Gertler and Karadi (2011); Christiano et al. (2014)
- Less focus yet on the role of financial spillovers Dedola and Lombardo (2012); Kollmann (2013); Banerjee et al. (2015)
- Do standard New Keynesian DSGE models fail to account for strong financial spillover channels?

Motivation

• Dramatic rise of financial globalisation since 1990s

- Growing potential for (monetary policy) spillovers Kim (2001); Canova (2005); Dedola et al. (2015); Feldkircher and Huber (2015); Georgiadis (forthcoming)
- Global financial cycle hypothesis Bekaert et al. (2013); Bruno and Shin (2015); Passari and Rey (2015); Rey (2015)

Parallel evolution of structural macro-modelling

- New Keynesian DSGE models Smets and Wouters (2003); Christiano et al. (2005)
- ► Global financial crisis spurred work on financial frictions Gertler and Karadi (2011); Christiano et al. (2014)
- Less focus yet on the role of financial spillovers Dedola and Lombardo (2012); Kollmann (2013); Banerjee et al. (2015)
- Do standard New Keynesian DSGE models fail to account for strong financial spillover channels?

Motivation

• Dramatic rise of financial globalisation since 1990s

- Growing potential for (monetary policy) spillovers Kim (2001); Canova (2005); Dedola et al. (2015); Feldkircher and Huber (2015); Georgiadis (forthcoming)
- Global financial cycle hypothesis Bekaert et al. (2013); Bruno and Shin (2015); Passari and Rey (2015); Rey (2015)

Parallel evolution of structural macro-modelling

- New Keynesian DSGE models Smets and Wouters (2003); Christiano et al. (2005)
- ► Global financial crisis spurred work on financial frictions Gertler and Karadi (2011); Christiano et al. (2014)
- Less focus yet on the role of financial spillovers Dedola and Lombardo (2012); Kollmann (2013); Banerjee et al. (2015)
- Do standard New Keynesian DSGE models fail to account for strong financial spillover channels?

What could be the consequences?

- Consider 3-country model for US, EA and Japan
- IS/Phillips curves, Taylor rules
- Cross-country uncorrelated MP shocks
- Financial spillovers

$$i_{it}^{(l)} = (1 - \vartheta_i) \cdot \left(\frac{1}{8} \sum_{j=0}^{8} E_t i_{i,t+j}^{(s)}\right) + \vartheta_i \cdot \left(\sum_{j=1, j \neq i}^{N} \omega_{ij} i_{jt}^{(l)}\right)$$
(1)

- $i_{it}^{(l)}$: Long-term interest rate (appearing in IS curve)
- ϑ_i : Degree of international financial integration
- ω_{ij} : Rel. importance of economy *j* in economy *i*'s overall integration

The Monte Carlo experiment

- Simulate data in multi-country model with financial spillovers
- Estimate MP shocks using single-country model which lacks financial spillovers on simulated data
- Compute cross-country correlations of MP shock estimates
- Repeat steps 1- a large number of times

Distribution of cross-country correlations between MP shock estimates across replications

- In the true DGP US MP shocks transmit to EA through financial spillover channels
- Confronted with these data, a model for the EA without financial spillovers has to label the US MP shocks somehow
- As the menu of shocks available is limited and transmission channels are missing, the model labels US MP shocks as domestic EA ones
- The same happens with a model for Japan
- The EA and Japan MP shock estimates are contaminated by a common US component

- In the true DGP US MP shocks transmit to EA through financial spillover channels
- Confronted with these data, a model for the EA without financial spillovers has to label the US MP shocks somehow
- As the menu of shocks available is limited and transmission channels are missing, the model labels US MP shocks as domestic EA ones
- The same happens with a model for Japan
- The EA and Japan MP shock estimates are contaminated by a common US component

- In the true DGP US MP shocks transmit to EA through financial spillover channels
- Confronted with these data, a model for the EA without financial spillovers has to label the US MP shocks somehow
- As the menu of shocks available is limited and transmission channels are missing, the model labels US MP shocks as domestic EA ones
- The same happens with a model for Japan
- The EA and Japan MP shock estimates are contaminated by a common US component

- In the true DGP US MP shocks transmit to EA through financial spillover channels
- Confronted with these data, a model for the EA without financial spillovers has to label the US MP shocks somehow
- As the menu of shocks available is limited and transmission channels are missing, the model labels US MP shocks as domestic EA ones
- The same happens with a model for Japan
- The EA and Japan MP shock estimates are contaminated by a common US component

- In the true DGP US MP shocks transmit to EA through financial spillover channels
- Confronted with these data, a model for the EA without financial spillovers has to label the US MP shocks somehow
- As the menu of shocks available is limited and transmission channels are missing, the model labels US MP shocks as domestic EA ones
- The same happens with a model for Japan
- The EA and Japan MP shock estimates are contaminated by a common US component

Hypothesis and testable predictions

Our hypothesis

NK DSGE models in the literature fail to adequately account for financial spillover channels in the data

Testable predictions

NK DSGE model MP shock estimates cross-country correlated

2 Correlations higher for more financially integrated economies

Hypothesis and testable predictions

Our hypothesis

NK DSGE models in the literature fail to adequately account for financial spillover channels in the data

Testable predictions

NK DSGE model MP shock estimates cross-country correlated

2 Correlations higher for more financially integrated economies

This paper

- Test hypothesis that NK DSGE models in the literature fail to adequately account for financial spillover channels
- Set up a database with MP shock estimates for 28 economies from 250 macro-models
- Evidence consistent with predictions from hypothesis

This paper

- Test hypothesis that NK DSGE models in the literature fail to adequately account for financial spillover channels
- Set up a database with MP shock estimates for 28 economies from 250 macro-models
- Evidence consistent with predictions from hypothesis

This paper

- Test hypothesis that NK DSGE models in the literature fail to adequately account for financial spillover channels
- Set up a database with MP shock estimates for 28 economies from 250 macro-models
- Evidence consistent with predictions from hypothesis

Outline

A monetary policy shock estimates database

Testing the predictions

Extensions and robustness

- Additional testable predictions
- Alternative explanations
- Alternative samples
- Alternative specifications

Onclusion

9/38

MP shock estimates database

- Database draws on existing/ongoing academic/institutional work
- Multitude of macro-models
 - Structural macro-models (NK DSGEs)
 - VAR models (SVARs, SVECMs, SFAVARs, SDFMs)
 - Other statistical approaches (shadow rates, term-structure models)
 - Narrative approaches
 - Shocks based on financial market expectations
- We consider MP shock estimates over 1993q1-2007q2

Country coverage

	DSGE	FME	NARR	SM	VAR	Total
AUS	8	0	0	1	3	12
BRA	6	0	0	1	0	7
CAN	6	0	0	1	2	9
CHE	6	0	0	0	1	7
CHL	3	0	0	0	1	4
CHN	4	0	0	0	1	5
COL	5	0	0	0	1	6
CZE	12	0	0	0	2	14
EAR	31	1	0	0	10	42
GBR	9	3	1	0	6	19
HUN	1	0	0	0	0	1
IND	3	0	0	2	1	6
ISL	1	0	0	0	0	1
ISR	3	0	0	0	1	4
JPN	6	0	0	1	1	8
KOR	5	0	0	0	0	5
MEX	3	0	0	0	0	3
NOR	1	0	0	0	2	3
NZL	6	0	0	0	1	7
PER	1	0	0	0	1	2
POL	7	0	0	0	2	9
ROU	1	0	0	0	0	1
RUS	5	0	0	0	0	5
SWE	4	0	0	0	3	7
THA	2	0	0	0	0	2
TUR	2	0	0	0	0	2
USA	25	5	2	3	17	52
ZAF	3	0	0	1	3	7
Total	169	9	3	10	59	250

Model type coverage

	Number of shocks	Percent
DSGE	169	67.6
FME	9	3.6
NARR	3	1.2
SM	10	4.0
VAR	59	23.6
Total	250	100.0

A monetary policy shock estimates database

2 Testing the predictions

Extensions and robustness

- Additional testable predictions
- Alternative explanations
- Alternative samples
- Alternative specifications

4 Conclusion

Hypothesis

NK DSGE models in the literature fail to adequately account for financial spillover channels in the data

Prediction 1

MP shock estimates from NK DSGE models cross-country correlated

Correlations between NK DSGE model MP shock estimates

Testing the predictions

Correlations between non-NK DSGE model MP shock estimates

Distribution of cross-country correlations

Distribution of NK DSGE shock cross-country correlations

Hypothesis

NK DSGE models in the literature fail to adequately account for financial spillover channels in the data

Prediction 2

Cross-country correlation between MP shock estimates higher for financially integrated economies

Consider the regression

$$\rho_{\ell_i,m_j} = \alpha_i + \gamma_j + \boldsymbol{x}_{ij} \cdot \boldsymbol{\beta} + u_{\ell_i,m_j}, \qquad (2)$$

 $i, j = 1, 2, ..., N, \quad i \neq j, \quad i, j \neq us, \quad \ell_i = 1, 2, ..., L_i, \quad m_j = 1, 2, ..., M_j,$

where

- *ρ*_{ℓi,mj}: Correlation between shock time series estimate ℓ_i of economy i and m_j of economy j
- x_{ij}: Vector of bilateral country characteristics
 - Economy i × economy j overall financial integration
 - Economy $i \times$ economy j bilateral financial integration with US
- Standard errors clustered at country-pair level

Consider the regression

$$\rho_{\ell_i,m_j} = \alpha_i + \gamma_j + \boldsymbol{x}_{ij} \cdot \boldsymbol{\beta} + \boldsymbol{u}_{\ell_i,m_j}, \qquad (2)$$

 $i,j=1,2,\ldots,N, \quad i\neq j, \quad i,j\neq us, \quad \ell_i=1,2,\ldots,L_i, \quad m_j=1,2,\ldots,M_j,$

where

- *ρ*_{ℓi,mj}: Correlation between shock time series estimate ℓ_i of economy i and m_j of economy j
- x_{ij}: Vector of bilateral country characteristics
 - Economy i × economy j overall financial integration
 - Economy $i \times$ economy j bilateral financial integration with US
- Standard errors clustered at country-pair level

Consider the regression

$$\rho_{\ell_i,m_j} = \alpha_i + \gamma_j + \mathbf{x}_{ij} \cdot \boldsymbol{\beta} + u_{\ell_i,m_j}, \qquad (2)$$

 $i, j = 1, 2, ..., N, \quad i \neq j, \quad i, j \neq us, \quad \ell_i = 1, 2, ..., L_i, \quad m_j = 1, 2, ..., M_j,$

where

- *ρ*_{ℓi,mj}: Correlation between shock time series estimate ℓ_i of economy i and m_j of economy j
- x_{ij}: Vector of bilateral country characteristics
 - Economy i × economy j overall financial integration
 - Economy i × economy j bilateral financial integration with US
- Standard errors clustered at country-pair level

	(1)	(2)	(3)	(4)
	DSGE	DSGE	DSGE	Non-DSGE
Overall financial integration	0.08***		0.07***	0.01
	(0.00)		(0.00)	(0.63)
Share of US in overall financial integration		0 07***	0 06***	0.01
		(0.00)	(0.00)	(0.57)
		(0.00)	(0.00)	(0.01)
Country 1 dummies	Yes	Yes	Yes	Yes
Country 2 dummies	Yes	Yes	Yes	Yes
Adj. R-squared	0.13	0.13	0.14	0.04
Observations	8286	7762	7762	1201
Country pairs	190	171	171	136

p-values in parentheses

21/38

A monetary policy shock estimates database

2 Testing the predictions

Extensions and robustness

- Additional testable predictions
- Alternative explanations
- Alternative samples
- Alternative specifications

Conclusion

Additional testable predictions

Consistent with

- the importance of banks in pre-crisis period, correlations higher for economies more integrated through banking interlinkages
- our hypothesis, correlations lower if NK DSGE models feature open-economy elements
- the trilemma, correlations also lower for country pairs which impose capital controls and/or feature flexible FX

Particular role for cross-border banking integration

	(1)	(2)	(3)	(4)
Overall financial integration	0.07***	0.07***	0.02	
	(0.00)	(0.01)	(0.54)	
Share of LIS in overall financial integration	0.06***	0.05***	0.06***	
Share of OS in overall intancial integration	(0.00)	(0.00)	(0.00)	
	(0.00)	(0.00)	(0.00)	
Share of portfolio assets in GFAL		-0.09		
		(0.32)		
Share of FDI in GFAL		0.04		
		(0.19)		
Share of other investment in GFAL		0.04		
		(0.10)		
Non-resident bank loans/GDP			0.03***	
			(0.00)	
Owners II have been sighting a section (ID)				0.00**
Overall banking financial integration (IR)				(0.02)
				(0.02)
Share of US in banking financial integration (IR)				-0.03
				(0.56)
Country 1 dummion	Vac	Voc	Vac	Vac
Country 1 durinnies	165	162	165	162
Country 2 dummies	Yes	Yes	Yes	Yes
Adj. R-squared	0.14	0.14	0.14	0.23
Observations	7762	7762	7762	2045
Country pairs	171	171	171	28

p-values in parentheses

Accounting for open-economy features helps

	(1)	(2)	(3)	(4)	(5)
Overall financial integration	0.08***	0.08***	0.08***	0.09***	0.11***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Share of US in overall financial integration	0.08***	0.08***	0.08***	0.08***	0.08***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
At least one multi-country model		-0.01			-0.02
		(0.50)			(0.17)
		(0.00)			(0.17)
Over. fin. integr. x at least one multi-country model		-0.02**			-0.02**
		(0.04)			(0.02)
Share of US in over. fin. integr. x at least one multi-country model		-0.01			-0.00
		(0.65)			(0.92)
At least one model with intern fin frictions			0.02		0.02
			(0.31)		(0.22)
			(0.0.)		(***==)
Over. fin. integr. x at least one model with intern. fin. frictions			-0.03**		-0.03***
			(0.01)		(0.00)
Ohenn of LIO is soon for interest on the standard with interest for fristing			0.04*		0.048
Share of US in over. fin. integr. x at least one model with intern. fin. frictio			-0.04*		-0.04*
			(0.09)		(0.07)
At least one SOE model with i*				-0.02**	-0.03***
				(0.02)	(0.00)
				()	(,
Over. fin. integr. x at least one SOE model with i*				-0.02***	-0.03***
				(0.00)	(0.00)
01 (110) / 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (
Share of US in over. fin. integr. x at least one SOE model with i*				0.01	0.01
				(0.30)	(0.27)
Country 1 dummies	Yes	Yes	Yes	Yes	Yes
Country 2 dummies	Yes	Yes	Yes	Yes	Yes
Adj. R-squared	0.14	0.14	0.14	0.14	0.15
Observations	5575	5575	5575	5575	5575
Country pairs	171	171	171	171	171

p-values in parentheses

Flexible FX and capital controls alleviate financial spillovers

	(1)	(2)	(3)
Overall financial integration	0.07***	0.06**	0.06**
	(0.00)	(0.02)	(0.04)
Share of US in overall financial integration	0.06***	0.06***	0.06***
	(0.00)	(0.00)	(0.00)
	()	()	()
Capital controls (PC)		0.01	0.04
		(0.28)	(0.18)
FX flexibility		0.00	0.00
3		(0.65)	(0.35)
Capital controls x At least one economy is EME			-0.03
			(0.32)
FX flexibility x At least one economy is EME			-0.00
			(0.23)
			0.10
At least one economy is EIVIE			(0.17)
			(0.17)
Country 1 dummies	Yes	Yes	Yes
	.,	.,	.,
Country 2 dummies	Yes	Yes	Yes
Adj. K-squared	0.14	0.14	0.14
Observations	7762	7762	7762
Country pairs	171	171	171

p-values in parentheses

A monetary policy shock estimates database

2 Testing the predictions

Extensions and robustness Additional testable predictions Alternative explanations Alternative samples

Alternative specifications

Conclusion

Alternative explanations

- Spillovers through trade rather than financial channels
- Bilateral rather than global MP shock component
- Mis-specification of Taylor rule and fear-of-floating
- Contamination by convolution of several types of global shocks rather than only global MP shocks

Alternative explanations I

	(1)	(2)	(3)	(4)	(5)	(6)
Overall financial integration	0.07***	0.07***	0.05**	0.06**	0.08***	0.05
	(0.00)	(0.00)	(0.04)	(0.01)	(0.01)	(0.23)
Share of US in overall financial integration	0.06***	0.09***	0.06***	0.06***	0.06***	0.09***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Trade integration		0.01				0.01
hade integration		(0.68)				(0.65)
Share of US in trade integration		-0.02***				-0.02***
		(0.01)				(0.01)
Bilateral financial integration			0.01*			0.01
			(0.06)			(0.52)
Bilateral trade integration				0.01		0.00
J. J				(0.25)		(0.88)
Net short in foreign currency					-0.02	-0.00
					(0.47)	(0.91)
			.,			
Country 1 dummies	Yes	Yes	Yes	Yes	Yes	Yes
Country 2 dummies	Yes	Yes	Yes	Yes	Yes	Yes
Adj. R-squared	0.14	0.14	0.14	0.14	0.14	0.14
Observations	7762	7762	7762	7762	7762	7762
Country pairs	171	171	171	171	171	171

p-values in parentheses

Alternative explanations II

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Overall financial integration	0.07***	0.06***	0.07***	0.07***	0.05**	0.07***	0.07***	0.07***	0.05*
	(0.00)	(0.00)	(0.00)	(0.00)	(0.02)	(0.00)	(0.00)	(0.00)	(0.05)
Chara of LIC in guarall financial integration	0.00***	0.00***	0.00***	0.07***	0.07***	0.07***	0.07***	0.07***	0.00***
Share of US in overall infancial integration	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Difference in trade integration		-0.01							-0.01
		(0.15)							(0.25)
		()							()
Difference in centrality			-0.00						-0.00
			(0.82)						(0.59)
Difference in GVC position				0.00					0.01
Difference in GVO position				(0.54)					(0.39)
				(0.04)					(0.00)
Difference in GVC participation					-0.01**				-0.01*
					(0.04)				(0.07)
I for the second state for the state of the state of the second st						0.04			0.00
Heterogeneity in output structure						0.01			(0.00
						(0.51)			(0.07)
Heterogeneity in export structure							0.01		0.01
3							(0.33)		(0.17)
Heterogeneity in import structure								0.01	0.00
								(0.67)	(0.90)
Country 1 dummies	Voc								
Goundy Fournines	165	163	163	163	165	163	165	165	163
Country 2 dummies	Yes								
Adj. R-squared	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Observations	7762	7762	7762	7378	7378	7378	7378	7378	7378
Country pairs	171	171	171	153	153	153	153	153	153

p-values in parentheses

Alternative samples

- Only MP shock estimates from central bank and IO models
- Maximum sample
- Without MP shock estimates of Vitek (2015)
- Only MP shock estimates from published studies

Alternative samples I

	(1)	(2)	(3)	(4)
	Baseline	CBs/IOs	w/o Vitek	Max. sample
Overall financial integration	0.07***	0.17*	0.08***	0.06***
	(0.00)	(0.05)	(0.00)	(0.00)
Share of US in overall financial integration	0.06***	0.15***	0.08***	0.07***
	(0.00)	(0.00)	(0.00)	(0.00)
Country 1 dummies	Yes	Yes	Yes	Yes
Country 2 dummies	Yes	Yes	Yes	Yes
Adj. R-squared	0.14	0.25	0.14	0.14
Observations	7762	214	5575	8847
Country pairs	171	105	171	300

p-values in parentheses

Alternative samples II

	(1)	(2)	(3)	(4)
	Baseline	Published	Keele > 1	Keele > 2
Overall financial integration	0.07***	0.04*	0.06**	0.11
	(0.00)	(0.06)	(0.04)	(0.26)
	0 00***	0 1 1 ***	0 1 0**	0 17*
Share of US in overall financial integration	0.06	0.11	0.13	0.17*
	(0.00)	(0.00)	(0.01)	(0.09)
Country 1 dummies	Yes	Yes	Yes	Yes
Country 2 dummies	Yes	Yes	Yes	Yes
Adj. R-squared	0.14	0.15	0.17	0.24
Observations	7762	1668	621	127
Country pairs	171	105	78	28

p-values in parentheses

Alternative specifications

- Set statistically not significant correlations to zero
- Logit transformation of correlation
- Country-shock fixed effects
- Robust regression
- Minimum of economies' variables rather than interaction
- Observations collapsed within country pairs

Alternative specifications

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Baseline	Insign.=0	Logit	FE	rreg	Min.	Collapsed
Overall financial integration	0.07***	0.05***	0.14***	0.07***	0.07***	0.07***	0.03***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Share of US in overall financial integration	0.06***	0.05***	0.13***	0.06***	0.06***	0.06***	0.00
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.51)
Country 1 dummies	Yes	Yes	Yes	No	Yes	Yes	No
Country 2 dummies	Yes	Yes	Yes	No	Yes	Yes	No
Country-shock 1 dummies	No	No	No	Yes	No	No	No
Country-shock 2 dummies	No	No	No	Yes	No	No	No
Adj. R-squared	0.14	0.10	0.14	0.25	0.14	0.14	0.06
Observations	7762	7762	7762	7762	7762	7762	171
Country pairs	171	171	171	171		171	

p-values in parentheses

US vs. EA as "core" economy

• EA may be "core" economy alongside the US, especially for European economies

US vs. EA as "core" economy

	(1)	(2)
	Baseline	No EA/US
Overall financial integration	0.07***	0.05**
	(0.00)	(0.02)
Share of US in overall financial integration	0.06***	0.01
	(0.00)	(0.73)
Share of EA in overall financial integration		0.06**
		(0.04)
Country 1 dummies	Yes	Yes
Country 2 dummion	Vaa	Vee
Country 2 dummes	res	res
Adj. R-squared	0.14	0.10
Observations	7762	4662
Country pairs	171	153

p-values in parentheses

37/38

A monetary policy shock estimates database

- Testing the predictions
- Extensions and robustness
 Additional testable predictions
 Alternative explanations
 Alternative samples
 Alternative specifications

Conclusion

Conclusion

- NK DSGE models in the literature imply cross-country correlated MP shock estimates
- This can be rationalised by a lack of accounting for financial spillover channels
- Possible/likely consequences
 - Inconsistent likelihood-based estimation of NK DSGE models
 - Mis-leading historical decompositions
- Financial spillovers are important elements in NK DSGE models if these are used for policy advice

Related literature

- Powerful financial spillover channels in NK DSGE models crucial to replicate cross-country business cycle correlations in the data lacoviello and Minetti (2006); Ueda (2012); Yao (2012); Chin et al. (2015)
- Standard open-economy NK DSGE models Justiniano and Preston (2010, JIE); Alpanda and Aysun (2014, JIMF)
 - fail to replicate business cycle co-movements in the data
 - imply only minor role of foreign shocks for domestic variables
 - match cross-country output correlations and spillovers much better if structural shocks are assumed to be cross-country correlated
- Our paper provides indications for the importance of financial spillovers in this class of models from a different perspective

Financial integration: Data

- Banerjee, R., Devereus, M., Lombardo, G., 2015. Self-Oriented Monetary Policy, Global Financial Markets and Excess Volatility of International Capital Flows. NBER Working Paper 21737.
- Bekaert, G., Hoerova, M., Lo Duca, M., 2013. Risk, Uncertainty and Monetary Policy. Journal of Monetary Economics 60 (7), 771–788.
- Bruno, V., Shin, H. S., 2015. Cross-Border Banking and Global Liquidity. Review of Economic Studies 82 (2), 535–564.
- Canova, F., 2005. The Transmission of US Shocks to Latin America. Journal of Applied Econometrics 20 (2), 229-251.
- Chin, M., Filippeli, T., Theodoridis, K., 2015. Cross-country Co-movement in Long-term Interest Rates: A DSGE Approach. Bank of England Working Paper 530.
- Christiano, L. J., Eichenbaum, M., Evans, C. L., 2005. Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy. Journal of Political Economy 113 (1), 1–45.
- Christiano, L. J., Motto, R., Rostagno, M., 2014. Risk Shocks. American Economic Review 104 (1), 27-65.
- Dedola, L., Lombardo, G., 2012. Financial Frictions, Financial Integration and the International Propagation of Shocks. Economic Policy 27 (70), 319–359.
- Dedola, L., Rivolta, G., Stracca, L., 2015. When the Fed Sneezes, Who Gets a Cold? mimeo.
- Feldkircher, M., Huber, F., 2015. The International Transmission of US Structural Shocks: Evidence from Global Vector Autoregressions. European Economic Review 81, 167–188.
- Georgiadis, G., forthcoming. Determinants of Global Spillovers from US Monetary Policy. Journal of International Money and Finance.
- Gertler, M., Karadi, P., 2011. A Model of Unconventional Monetary Policy. Journal of Monetary Economics 58 (1), 17–34.
- Iacoviello, M., Minetti, R., 2006. International Business Cycles with Domestic and Foreign Lenders. Journal of Monetary Economics 53 (8), 2267–2282.
- Kim, S., 2001. International Transmission of U.S. Monetary Policy Shocks: Evidence from VAR's. Journal of Monetary Economics 48 (2), 339–372.
- Kollmann, R., 2013. Global Banks, Financial Shocks, and International Business Cycles: Evidence from an Estimated Model. Journal of Money, Credit and Banking 45 (2), 159–195.
- Passari, E., Rey, H., 2015. Financial Flows and the International Monetary System. Economic Journal 125 (584), 675–698.
- Rey, H., 2015. Dilemma not Trilemma: The Global Financial Cycle and Monetary Policy Independence. NBER Working Paper 21162.
- Smets, F., Wouters, R., 2003. An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area. Journal of the European Economic Association 1 (5), 1123–1175.
- Ueda, K., 2012. Banking Globalization and International Business Cycles: Cross-border Chained Credit Contracts and Financial Accelerators. Journal of International Economics 86 (1), 1–16.
- Vitek, F., 2015. Macrofinancial Analysis in the World Economy : A Panel Dynamic Stochastic General Equilibrium Approach. IMF Working Paper 15/227.
- Yao, W., 2012. International Business Cycles and Financial Frictions. Bank of Canada Working Paper 12-19.