						Conclude
000	0000	0	0000	00	00	0

Output Gaps and Robust Monetary Policy Rules

Roberto M. Billi Sveriges Riksbank

Conference on Monetary Policy Challenges from a Small Country Perspective, National Bank of Slovakia

Bratislava, 23-24 November 2016

Intro						Conclude
000	0000		0000	00	00	
Shou	ıld mo	netary p	olicy focus on	output ga	aps?	

- Policy makers often use the **output gap** to guide monetary policy, even though **nominal gross domestic product** (GDP) and **prices** are measured in real time more accurately than the output gap.
- Employing a small New Keynesian model with a zero lower bound (ZLB) on nominal interest rates, this article compares the performance of monetary-policy rules that are robust to errors in measuring the output gap, nominal GDP level, or price level.
- The analysis shows that a robust policy rule that focuses on **stabilizing the price level improves economic performance**, especially when the analysis accounts for **persistent measurement errors** as faced in practice.

Intro						Conclude
000						
Shou	uld mo	netary p	olicy focus on	output ga	aps?	

- Policy makers often use the **output gap** to guide monetary policy, even though **nominal gross domestic product** (GDP) and **prices** are measured in real time more accurately than the output gap.
- Employing a small New Keynesian model with a zero lower bound (ZLB) on nominal interest rates, this article compares the performance of monetary-policy rules that are robust to errors in measuring the output gap, nominal GDP level, or price level.
- The analysis shows that a robust policy rule that focuses on **stabilizing the price level improves economic performance**, especially when the analysis accounts for **persistent measurement errors** as faced in practice.

Intro						Conclude
000						
Shou	uld mo	netary p	olicy focus on	output ga	aps?	

- Policy makers often use the **output gap** to guide monetary policy, even though **nominal gross domestic product** (GDP) and **prices** are measured in real time more accurately than the output gap.
- Employing a small New Keynesian model with a zero lower bound (ZLB) on nominal interest rates, this article compares the performance of monetary-policy rules that are robust to errors in measuring the output gap, nominal GDP level, or price level.
- The analysis shows that a robust policy rule that focuses on **stabilizing the price level improves economic performance**, especially when the analysis accounts for **persistent measurement errors** as faced in practice.

- Absent data uncertainty: Svensson (1999), Eggertsson and Woodford (2003), Svensson (2003), Wolman (2005), Adam and Billi (2006, 2007), Vestin (2006), Nakov (2008), Evans (2012), and Giannoni (2014).
- Absent the ZLB constraint: Orphanides et al. (2000), Orphanides (2001, 2003), Rudebusch (2002), Smets (2002), Aoki (2003, 2006), Svensson and Woodford (2003, 2004), Boehm and House (2014), Garín, Lester and Sims (2016).
- **ZLB and purely-temporary measurement errors only**: Gust, Johannsen and Lopez-Salido (2015).
- Proponents of nominal-GDP-level targets: Hatzius and Stehn (2011, 2013), Sumner (2011, 2014), Woodford (2012, 2013), Frankel (2013), among others.

Intro	Model	Equilibrium	Evaluation: 1. noise absent	2. white noise	 persistent noise OO 	Conclude
00●	0000	O	0000	OO		O
Outl	ine					

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- The model and monetary policy rules
- Noisy equilibrium
- Policy evaluation:
 - noise absent
 - 2 white noise
 - opersistent noise
- Conclude

• An Euler equation describes the household's expenditure decisions

$$y_t = E_t y_{t+1} - \varphi \left(i_t - r - E_t \pi_{t+1} - v_t \right)$$
(1)

• A Phillips curve describes the optimal price-setting behavior of firms

$$\pi_t = \beta E_t \pi_{t+1} + \kappa \left(y_t - y_t^n \right) + u_t \tag{2}$$

- Where $y_t y_t^n = x_t$ is the output gap.
- The structural shocks (y_t^n, u_t, v_t) follow AR(1) stochastic processes

$$y_t^n = \rho_y y_{t-1}^n + \sigma_{\varepsilon y} \varepsilon_{yt}$$

$$u_t = \rho_u u_{t-1} + \sigma_{\varepsilon u} \varepsilon_{ut}$$

$$v_t = \rho_y v_{t-1} + \sigma_{\varepsilon v} \varepsilon_{vt}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Poli	cv eval	uation b	ased on social	welfare fi	unction	
000	0000		0000	00	00	
	Model	Equilibrium				Conclude

• Usual approx. of the lifetime utility function of the household

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[\pi_t^2 + \lambda x_t^2 \right]$$
(3)

• The Ramsey plan, the **optimal commitment** policy determined at time zero, used as a benchmark for the policy evaluation.

Intro 000	Model OO●O		Evaluation: 1. noise absent 0000	white noise	 persistent noise OO 	Conclude O
The	simple	e policy i	rules I			

• Inertial Taylor rule along the lines of Taylor and Williams (2010)

$$i_{t}^{u} = \phi_{i}i_{t-1}^{u} + (1 - \phi_{i})\left[(r + \phi_{\pi}\pi_{t}^{o} + \phi_{x}x_{t}^{o})\right]$$
(4)
$$i_{t} = \max\left(0, i_{t}^{u}\right)$$

- Where $\pi_t^o = \pi_t + e_t^{\pi}$ and $x_t^o = x_t + e_t^{\chi}$ are observed.
- e_t^{π} and e_t^{χ} are **noise shocks** that follow AR(1) stochastic processes.

Intro 000	Model 000●		Evaluation: 1. noise absent 0000		Conclude O
The	simple	e policy	rules II		

• Strict-price-level (SPL) rule

$$i_t = \max\left(0, r + \phi_p p_t^o\right) \tag{5}$$

• Nominal-GDP-level (NGDPL) rule

$$i_t = \max\left(0, r + \phi_n n_t^o\right) \tag{6}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Where $p_t^o = p_t + e_t^p$ and $n_t^o = n_t + e_t^n$ are observed.

•
$$p_t = p_{t-1} + \pi_t$$
 and $n_t = p_t + y_t$.
• e_t^p and e_t^n are AR(1) noise shocks.

- An equilibrium is given by:
 - a response function $\mathbf{y}(\mathbf{s}_{t}) = \{ y(\mathbf{s}_{t}), p(\mathbf{s}_{t}), \pi(\mathbf{s}_{t}), i(\mathbf{s}_{t}) \}$
 - and expectations function $\mathbf{E}_{t}\mathbf{y}(\mathbf{s}_{t+1}) = \int \mathbf{y}\left(\mathbf{s}_{t+1}\right) f\left(\mathbf{\epsilon}_{t+1}\right) d\left(\mathbf{\epsilon}_{t+1}\right)$
 - ullet where $arepsilon_{t+1}$ are future innovations of structural and noise shocks

Policy rule	Equilibrium conditions	State vector
Inertial Taylor rule	(1), (2) and (4)	$s_t = \left(y_t^n, u_t, v_t, e_t^\pi, e_t^x, i_{t-1}^u ight)$
Strict-price-level rule	(1), (2) and (5)	$m{s}_t = ig(y^n_t, m{u}_t, m{v}_t, m{e}^p_t, m{p}_{t-1}ig)$
Nominal-GDP-level rule	(1), (2) and (6)	$s_t = (y_t^n, u_t, v_t, e_t^n, p_{t-1})$

Policy	v eval	uation in	three distinct	economi	c environm	ents
000	0000		0000	00	00	
	Model	Equilibrium	Evaluation: 1. noise absent			Conclude

- Noise absent
- White noise
- Persistent noise

	Model	Equilibrium	Evaluation: 1. noise absent			Conclude
000	0000		0000	00	00	
Base	eline ca	alibratior	n as in Billi (MD, forthc	oming), Tal	b. 1

Definition	Parameter	Numerical value
Discount factor	β	0.99
Interest elasticity of aggregate demand	φ	6.25
Share of firms keeping prices fixed	ά	0.66
Price elasticity of demand	θ	7.66
Elasticity of a firms' marginal cost	ω	0.47
Slope of aggregate supply curve	κ	0.024
Weight on output gap	λ	0.003
Taylor rule coefficients	$\phi_{\pi,x,i}$	1.5; 0.25; 0.85
Std. deviation of technology shock	σ_y	0.80%
Std. deviation of mark-up shock	σ_{u}	0.05%
Std. deviation of demand shock	σ_{v}	0.80%
AR(1) parameter of shocks	$\rho_{y,u,v}$	0.80

Notes: Because in the model a period is one quarter, shown are parameter values corresponding to inflation and interest rates measured at a quarterly rate. The values of the inertial Taylor rule coefficients are taken from English, Lopez-Salido and Tetlow (IMF Economic Review, 2015).

Ei~	1. E.,	of the aconomy	if no mo	acuramant	OKKOKO
000	0000	0000	00	00	
		Evaluation: 1. noise absent			Conclude

Fig. 1: Evolution of the economy if no measurement errors

Tab	1. E.					
000	0000	0	0000	00	00	0
			Evaluation: 1. noise absent			Conclude

Tab. 1: Economic performance if no measurement errors

	Rule coeff. ZLB episodes		Welfare loss ^b				
	$\overline{\phi_{i,p,n}}$	Freq. ^c	Duration ^d	Tot.			
Inertial Taylor rule							
Techn. shock only	0.87	0.0	0.0	0.0			
Mark-up shock only	0.87	0.0	0.0	10.5			
Demand shock only	0.87	1.9	3.1	40.7			
Strict-price-level rule							
Techn. shock only	1	0.0	0.0	0.0			
Mark-up shock only	1	0.0	0.0	4.0			
Demand shock only	100	12.5	2.6	5.1			
	Nominal-GDP-level rule						
Techn. shock only	1	0.0	0.0	1.4			
Mark-up shock only	1	0.0	0.0	5.5			
Demand shock only	100	15.0	2.4	15.8			

a. Baseline calibration but with optimal rule coefficients.

- b. Permanent consumption loss (basis points).
- c. Expected percent of time at the ZLB.
- d. Expected number of consecutive quarters at the ZLB.

Calibration	o of tho	moscurement		00	0
Calibratio	n of the	measurement e	errors		

- Noise shocks in the model are fit to historical revisions of U.S. data for the period 1991Q1-2015Q4:
 - Output gap (x) from Congressional Budget Office
 - Prices (π, p) measured by core personal consumption expenditures
 - Nominal GDP (n) from Bureau of Economic Analysis

	Historical revisions				
	x	π	р	n	
Std. deviation	1.7	0.3	0.3	1.1	
Autocorrelation	0.85	0.7	0.8	0.8	

	Model	Equilibrium		white noise		Conclude
000	0000		0000	00	00	
		1.1.1.1	C 1.1.			

Fig. 2: Evolution after white-noise shock

Fig. 3: Evolution after persistent-noise shock

Intro 000	Model 0000		Evaluation: 1. noise absent 0000	2. white noise OO	 persistent noise 	
Tab.	6: Ef	fects of	noise on econ	iomic perfo	rmance	
=			Rule coeff.	ZLB episod	es Wel	lfare loss ^b
			ϕ	Freg. ^c Durat	tion ^d	Tot.

	$\varphi_{i,p,n}$	Freq.	Duration	I OT.				
Without measurement errors								
Inertial Taylor rule	0.87	1.5	2.9	52.8				
Strict-price-level rule	100	10.7	2.6	10.2				
Nominal-GDP-level rule	100	11.0	2.1	22.6				
Purely-temporary measurement errors								
Inertial Taylor rule	0.88	0.7	2.1	54.1				
Strict-price-level rule	10	8.6	2.2	18.1				
Nominal-GDP-level rule	20	10.6	2.0	23.0				
Persistent measurement errors								
Inertial Taylor rule	0.88	0.9	2.3	66.9				
Strict-price-level rule	20	6.4	2.6	14.0				
Nominal-GDP-level rule	20	11.0	2.1	22.7				

a. Baseline calibration but with optimal rule coefficients.

- b. Permanent consumption loss (basis points).
- c. Expected percent of time at the ZLB.
- d. Expected number of consecutive quarters at the ZLB.

Mon	etary	policy sh	ould focus on	the price	level	
000	0000		0000	00	00	•
	Model	Equilibrium				Conclude

- Some argue that monetary-policy rules should ignore the **output gap** and seek to stabilize the **level of nominal GDP** because:
 - monetary policy would be more robust to measurement errors;
 - and would ensure greater stimulus during ZLB episodes.
- However, because prices are measured in real time more accurately than nominal GDP, why not stabilize the price level?
- Still, as the analysis is conducted in a **stylized model**, further study is needed to extend the results to a broader class of models.