Targeting financial stability: macroprudential or monetary policy?

David Aikman Julia Giese Sujit Kapadia Michael McLeay

Bank of England ¹

24 November 2016 Monetary Policy Challenges from a Small Country Perspective

¹The views expressed in this paper are those of the authors, and not necessarily those of the Bank of England or its committees.

Pre-crisis: UK monetary policy and financial stability

(a) Date MPC shifted to a 2% CPI inflation target

Sources: Published accounts and Bank calculations.

Post-crisis views

- Broad agreement on need for tougher structural regulation of financial sector and the role of macroprudential policy...
- ...but this raises questions on the interaction with monetary policy:
 - Should monetary policy also 'lean against the wind'? Or should it loosen to offset the effects of tighter macroprudential policy?
 - Or put differently when are the two policies substitutes and complements?
- Divergent views among academics and policymakers:
 - Stein (2013) only 'monetary policy gets in all the cracks'
 - Shin (2015) 'both monetary policy and macroprudential policies have some effect in constraining credit growth and the two tend to be complements'
 - Svensson (2015) 'little or no support for leaning against the wind for financial stability purposes

An attempt at an answer

- Develop a simple, common framework for policymakers
- Posit a semi-structural New Keynesian model augmented with a role for credit and a possibility of a financial crisis, (similar to Woodford (2012), Ajello *et al* (2015) and Svensson (2016))
- Introduce macroprudential policy via a countercyclical capital buffer (CCyB) and add a financial stability goal to loss function
- Examine jointly optimal policy, and how it changes at the zero lower bound
- Characterise situations when policies are substitutes or complements, and whether monetary policy should lean against the wind

A basic macro model

- 2 period model
 - Textbook model plus credit spreads, s1, and a role for credit

- Phillips curve: π₁ = κy₁ + E₁^{ps}π₂ + νs₁ + u₁^π
 ν ≥ 0
- Real credit growth: B₁ = φ₀ + φ_ii₁ + φ_ss₁ + u₁^B
 φ_i, φ_s < 0

Adding a macroprudential tool and a financial stability goal

- Macroprudential policy: $s_1 = \psi k_1$
 - Higher CCyB, k₁, increases spreads
- Crisis probability: $\gamma_1 = \frac{\exp(h_0 + h_1 B_1 + h_2 k_1)}{1 + \exp(h_0 + h_1 B_1 + h_2 k_1)}$
 - *h*₁ > 0 high credit growth increases γ₁ affected by both instruments
 - $h_2 < 0$ higher CCyB also reduces γ_1 via resilience channel

Optimal policy

Policymaker minimises loss function:

 $\frac{1}{2}(\pi_1^2 + \lambda y_1^2 + \beta(\gamma_1(1+\zeta)(\pi_{2,c}^2 + \lambda y_{2,c}^2) + (1-\gamma_1)(\pi_{2,nc}^2 + \lambda y_{2,nc}^2))$

- ζ is extra financial stability weight
- Optimal inter-temporal condition:

marginal benefit from lower crisis probability

$$= \overline{\left(\frac{\partial \gamma_1}{\partial k_1} + \frac{\partial \gamma_1}{\partial l_1} (\frac{\nu \psi}{\kappa \sigma} - \omega \psi)\right)} (- \frac{\partial L}{\partial \gamma_1})$$

cost of crisis

Optimal intra-temporal condition:

 $\overline{\lambda}y_1 + \kappa \pi_1 = 0$, where $\overline{\lambda} < \lambda$

Optimal policy

- Policymaker minimises loss function:
 - $\frac{1}{2}(\pi_1^2 + \lambda y_1^2 + \beta(\gamma_1(1+\zeta)(\pi_{2,c}^2 + \lambda y_{2,c}^2) + (1-\gamma_1)(\pi_{2,nc}^2 + \lambda y_{2,nc}^2))$
 - ζ is extra financial stability weight
- Optimal inter-temporal condition:

marginal cost of CCyB $\underbrace{\lambda y_1(-\frac{\nu\psi}{\kappa})}_{\lambda y_1(-\frac{\nu\psi}{\kappa})} = \underbrace{(\frac{\partial\gamma_1}{\partial k_1} + \frac{\partial\gamma_1}{\partial i_1}(\frac{\nu\psi}{\kappa\sigma} - \omega\psi))(-\frac{\partial L}{\partial\gamma_1})}_{\text{cost of arisin}}$

cost of crisis

Optimal intra-temporal condition:

$$\overline{\lambda}y_1 + \kappa\pi_1 = 0$$
, where $\overline{\lambda} < \lambda$

Calibration

- Interpret time period as 3 years to capture credit building up over a longer horizon and policy implementation lags
- Parameters on credit, aggregate demand and supply based on empirical UK literature
- Parameters on the probability of a financial crisis estimated using a cross-country dataset in Bush et al. (forthcoming), giving this implied crisis probability for the UK:

Monetary-financial stability trade-off with monetary policy only

 Monetary policymaker faces steep trade-off if acting alone, especially if credit growth is high

The role of macroprudential policy

• A higher CCyB implies a lower crisis probability for a given level of credit growth and vice versa

Monetary-financial stability trade-off with macroprudential policy

 With active macroprudential policy, each of the two instruments can focus on a single objective

Policy functions for different sizes of credit shock

 Optimal policy suggests the CCyB should tighten and monetary policy loosen, in response to a credit shock

Equilibrium outcomes, for different sizes of credit shock

 Using the CCyB means that credit growth has less impact on the crisis probability, but also pushes inflation up and output down

Monetary-financial stability trade-off at the ZLB

 Policymaker's trade-off worsens if monetary policy becomes constrained

CCyB policy function as credit growth varies

 With monetary policy unavailable, it is optimal to use the CCyB less in response to credit shocks

Complements or substitutes: Parameter choices

- Monetary and macroprudential policies are strategic substitutes so far
- Might be strategic complements if macroprudential policy has large supply effects, or if a higher CCyB boosts aggregate demand, ie if $\nu \psi \frac{\kappa}{\kappa^2 + \lambda_v} > \sigma \omega \psi$

Complements or substitutes: Policy responses to shocks

Complements or substitutes: Policy responses to shocks

- When credit and demand shocks hit together, instruments are complements
- Eg. when the credit and business cycles are closely aligned

Credit leakage to market-based finance sector

- Assume $\gamma_1 = b\gamma_1^{BL} + (1-b)\gamma_1^{SL}$,
 - $\gamma_1^{BL} = \frac{\exp(h_0 + h_1 BL_1 + h_2 k_1)}{1 + \exp(h_0 + h_1 BL_1 + h_2 k_1)}$ probability of banking crisis $\gamma_1^{SL} = \frac{\exp(h_0 + h_1 SL_1)}{1 + \exp(h_0 + h_1 SL_1)}$ probability of market-based crisis

 - b share of lending in banking sector
- CCvB (k₁) cannot increase resilience in market-based
- Bank and market-based lending determined by:
 - $BL_1 = \phi_0^B + \phi_i i_1 + \phi_s^B S_1 + U_1^B$
 - $SL_1 = \phi_0^S + \phi_i i_1 + \phi_0^S s_1 + u_1^S$
 - $\phi_{a}^{B} < 0$, $\phi_{a}^{B} > 0$ CCvB causes credit to leak to market

Credit leakage to market-based finance sector

- Assume $\gamma_1 = b\gamma_1^{BL} + (1-b)\gamma_1^{SL}$,
 - $\gamma_1^{BL} = \frac{\exp(h_0 + h_1 BL_1 + h_2 k_1)}{1 + \exp(h_0 + h_1 BL_1 + h_2 k_1)}$ probability of banking crisis $\gamma_1^{SL} = \frac{\exp(h_0 + h_1 SL_1)}{1 + \exp(h_0 + h_1 SL_1)}$ probability of market-based crisis

 - b share of lending in banking sector
- CCvB (k₁) cannot increase resilience in market-based sector
- Bank and market-based lending determined by:
 - $BL_1 = \phi_0^B + \phi_i i_1 + \phi_s^B S_1 + U_1^B$
 - $SL_1 = \phi_0^S + \phi_i i_1 + \phi_0^S s_1 + u_1^S$
 - $\phi_{a}^{B} < 0$, $\phi_{a}^{B} > 0$ CCvB causes credit to leak to market

Credit leakage to market-based finance sector

- Assume $\gamma_1 = b\gamma_1^{BL} + (1-b)\gamma_1^{SL}$,
 - $\gamma_1^{BL} = \frac{\exp(h_0 + h_1 BL_1 + h_2 k_1)}{1 + \exp(h_0 + h_1 BL_1 + h_2 k_1)}$ probability of banking crisis $\gamma_1^{SL} = \frac{\exp(h_0 + h_1 SL_1)}{1 + \exp(h_0 + h_1 SL_1)}$ probability of market-based crisis

 - b share of lending in banking sector
- CCvB (k₁) cannot increase resilience in market-based sector
- Bank and market-based lending determined by:

•
$$BL_1 = \phi_0^B + \phi_i i_1 + \phi_s^B s_1 + u_1^E$$

- $SL_1 = \phi_0^S + \phi_i i_1 + \phi_s^S s_1 + u_1^S$
- $\phi_{c}^{B} < 0$, $\phi_{c}^{B} > 0$ CCyB causes credit to leak to market based sector

Credit leakage to market-based finance sector

 As macroprudential policies become less effective, there is a larger role for monetary policy to lean against the wind.

A strong risk-taking channel of monetary policy

- $B_1 = \phi_0 + \phi_i i_1 + \phi_s s_1 + \phi_{i,s} i_1 s_1 + u_1^B$, where $\phi_{i,s} < 0$
- As lower interest rates make the CCyB less effective at reducing lending growth, there is a larger role for monetary policy to lean against the wind.

Summary

- Developed a simple framework for modelling optimal monetary-macroprudential policy interactions
- In our benchmark calibration monetary policy and macroprudential policy are strategic substitutes, but could also be complements giving rise to 'leaning against the wind'
- Macroprudential policy may wish to pay more attention to monetary policy goals at the ZLB
- Next steps:
 - Further work on calibration and robustness: gauge quantitative significance of different channels
 - Infinite horizon setting
 - Incorporating product-based macroprudential tools
 - Open-economy considerations/Two-country model

Extra slides

Parameter choices (1)

Parameter	Description	Parameter	Notes			
Standard Macro Parameters						
β	Discount Factor	0.99	Matches r*=1%			
σ	Interest-rate sensitivity of ouptut	0.57	Burgess et al (2013)			
κ	Slope of the Phillips Curve	1.03	Burgess et al (2013)			
λ	Weight on output stabilisation	0.05	Standard welfare-based			
i*	Long-run natural nominal rate of interest	3%	Rachel and Smith (2015)			
Effect of the CCyB						
ψ	Effect of the CCyB on credit spreads	0.2	1pp equity = 20bps - MAG (2010)			
ω	Effect of spreads relative to policy rate on y	1.1	Cloyne et al (2015), updated			
ν	Effect of spreads on the Phillips Curve	0.41	Franklin, Rostom and Thwaites (2015)			
Financial conditions equation parameters						
ϕ_0	Average real credit growth	0.21	Historical average			
ϕ_i	Coefficient on interest rates	-1.4	Cloyne et al (2015), updated			
ϕ_s	Coefficient on spreads	-6.1	Cloyne et al (2015), updated			

Parameter choices (2)

Parameter	Description	Parameter	Notes			
Crisis probability equation parameters						
h_0	Constant	-1.7 + 0.11 <i>h</i> 2	All estimated using			
h ₁	Coefficient on leverage vairable	5.18	dataset constructed in			
h ₂	Coefficient on k_1 , (resilience effect of CCyB)	-27.8	Bush et al (forthcoming)			
ϵ	Private sector perception of crisis probability	0.0005	Arbritarily small			
Period 2 parameters						
<i>Y</i> _{2.c}	Deviation of output from efficient in crisis state	-0.032	3.2% lost output per year			
			Brooke et al (2015)			
π2.c	Deviation of inflation from target in crisis state	0	No effect			
ζ	Extra weight on E(crisis cost)	0	Risk-neutral policy			
Shocks						
$SD(u_1^y)$	Standard deviation of demand shocks	0.0125	Similar to risk premium shock in			
			Burgess et al (2013)			
$SD(u_1^{\pi})$	Standard deviation of cost-push shocks	0.0011	Similar to mark-up shocks in			
			Burgess et al (2013)			
$SD(u_1^B)$	Standard deviation of credit shocks	0.16	Set to match historical data			

Coordinated versus uncoordinated policies

 Policies look almost identical with split objectives - there is little need for monetary policy to lean against the wind

Should monetary policy also target financial stability?

 Yes in theory...but according to our calibration, by a very small amount.

Complements or substitutes: Parameter choices

Policy interaction		Δi_1	Parameter case	Intuition
Strategic complements		+ive	$\nu\psi_{\frac{\kappa}{\kappa^2+\lambda_y}} > \sigma\omega\psi$	(Supply effect of CCB)*(policymaker weight on inflation) > demand effect of CCB
Benchmark: Strategic substitutes	+ive	-ive	$\frac{\nu\psi\frac{\kappa}{\kappa^{2}+\lambda_{y}} < \sigma\omega\psi,}{\frac{\partial\gamma_{1}}{\frac{\partial\kappa_{1}}{\partial\gamma_{1}}} > (\sigma\omega\psi - \nu\psi\frac{\kappa}{\kappa^{2}+\lambda_{y}})\sigma^{-1}}$	Demand effect of CCB is bigger than (weighted) supply effect, but the CCB is still relatively more effective at reducing crisis probability
Strategic substitutes and instrument switches	-ive	+ive	$\frac{\frac{\partial\gamma_1}{\partial k_1}}{\frac{\partial\gamma_1}{\partial i_1}} < (\sigma\omega\psi - \nu\psi\frac{\kappa}{\kappa^2 + \lambda_y})\sigma^{-1}$	Relative effect of the CCB/interest rates on crisis probability < relative effect of the CCB/interest rates on demand and supply