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1. INTRODUCTION
The problem of testing whether a sample of observations comes from a Gaussian distribution

has attracted considerable attention over the years. This is not perhaps surprising in view

of the fact that normality is a common maintained assumption in a wide variety of statisti-

cal procedures, including estimation, inference, and forecasting procedures. In the context of

model building, a test for normality is often a useful diagnostic for assessing whether a par-

ticular type of stochastic model may provide an appropriate characterization of the data (for

instance, non-linear models are unlikely to be an adequate approximation to a time series hav-

ing a Gaussian one-dimensional marginal distribution). Normality tests may also be useful in

evaluating the validity of different hypotheses and models to the extent that the latter rely on

or imply Gaussianity, as is the case, for example, with some option pricing, asset pricing, and

dynamic stochastic general equilibrium models found in the economics and finance literature.

Other examples where normality or otherwise of the marginal distribution is of interest, include

value-at-risk calculations (e.g., Cotter (2007)), and copula-based modelling for multivariate time

series with the marginal distribution and the copula function being specified separately. Kilian

and Demiroglu (2000) and Bontemps and Meddahi (2005) give further examples where testing

for normality is of interest.

Although most of the literature on tests for normality has focused on the case of independent

and identically distributed (i.i.d.) observations (see Thode (2002) for an extensive review), a

number of tests which are valid for dependent data have also been proposed. These include

tests based on empirical standardized cumulants (Lobato and Velasco (2004), Bai and Ng

(2005)), moment conditions of various types (e.g., Epps (1987), Moulines and Choukri (1996),

Bontemps and Meddahi (2005)), the bispectral density function (e.g., Hinich (1982), Nusrat and

Harvill (2008), Berg et al. (2010)), and the empirical distribution function (Psaradakis and Vávra

(2017)). Unlike normality tests for i.i.d. observations, whose finite-sample behaviour has been

extensively studied (see, inter alia, Baringhaus et al. (1989), Romão et al. (2010), and Yap and

Sim (2011)), a similar comparison, across a common set of data-generating mechanisms, of

tests designed for dependent data is not currently available in the literature.

Our aim in this paper is twofold. First, we wish to investigate the small-sample size and power

properties of tests for normality of the one-dimensional marginal distribution of a strictly sta-

tionary time series. The tests under consideration are some of those mentioned in the previous

paragraph, as well as tests that rely on the empirical characteristic function of the data. Sec-

ond, since in the presence of serial dependence conventional large-sample approximations to

the null distributions of some of the test statistics under consideration are inaccurate, unknown,

or depend on the correlation structure of the data in complicated ways, we wish to investigate

the possibility of using bootstrap resampling to implement tests of normality. More specifically,

we consider estimating the null sampling distributions of the test statistics of interest by means
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of the so-called autoregressive sieve bootstrap, and thus obtain P -values and/or critical values

for normality tests. The bootstrap method is based on the idea of approximating the data-

generating mechanism by an autoregressive sieve, that is, a sequence of autoregressive mod-

els the order of which increases with the sample size (e.g., Kreiss (1992), Bühlmann (1997)).

Bootstrap-based normality tests are straightforward to implement and, as our simulation exper-

iments demonstrate, offer significant improvements over asymptotic tests, that is, tests that use

critical values from the large-sample null distributions of the relevant test statistics.

The remainder of the paper is organized as follows. Section 2 provides an overview of the

normality tests of interest. Section 3 discusses how the autoregressive sieve bootstrap may

be used to implement tests for normality of dependent data. Section 4 examines the small-

sample properties of asymptotic and boostrap-based normality tests by means of Monte Carlo

simulations. Section 5 summarizes and concludes.

2. PROBLEM AND TESTS

2.1 STATEMENT OF THE PROBLEM

Suppose that (X1, X2, . . . , Xn) are n consecutive observations from a strictly stationary, real-

valued, discrete-time stochastic process X = {Xt}∞t=−∞ having mean µX = E(Xt) and vari-

ance σ2X = E[(Xt−µX)2] > 0. It is assumed that X is weakly dependent, in the sense that its au-

tocovariance sequence decays towards zero sufficiently fast so that the series
∑∞

τ=0Cov(Xt, Xt−τ )

converges absolutely (and, consequently, X has a continuous and bounded spectral den-

sity). The problem of interest is to test the composite null hypothesis that the one-dimensional

marginal distribution of X is Gaussian, that is,

H0 : (Xt − µX)/σX ∼ N (0, 1), (1)

where a tilde ‘∼’ means ‘is distributed as’. The alternative hypothesis is that the distribution of

Xt is non-Gaussian.

2.2 TESTS BASED ON SKEWNESS AND KURTOSIS

Bowman and Shenton (1975) and Jarque and Bera (1987) proposed a test for normality based

on the empirical standardized third and fourth cumulants, exploiting the fact that for a normal

distribution all cumulants of order higher than the second are zero. The test statistic is given by

JB =
nµ̂23
6µ̂32

+
n(µ̂4 − 3µ̂22)

2

24µ̂42
, (2)
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where, for an integer r > 2, µ̂r = (1/n)
∑n

t=1(Xt − X̄)r and X̄ = (1/n)
∑n

t=1Xt. For Gaussian

i.i.d. data, JB is approximately χ2
2 distributed for large n. Although a test which rejects when

JB exceeds an appropriate quantile of the χ2
2 distribution is clearly not guaranteed to have

correct asymptotic level in the presence of serial dependence, it is arguably the most popular

normality test in the literature and is available in many statistical and econometric packages

(e.g., EViews, Matlab, Stata). It will, thus, serve as a benchmark for comparisons in our study.

Bai and Ng (2005) developed a related test which allows for weak dependence in the data. The

test is based on the statistic

BN =
nµ̂23

ζ̂3µ̂32
+
n(µ̂4 − 3µ̂22)

2

ζ̂4µ̂42
, (3)

where ζ̂3 and ζ̂4 are consistent estimators of the asymptotic variance of
√
nµ̂
−3/2
2 µ̂3 and

√
nµ̂−22 (µ̂4−

3µ̂22), respectively. Following Bai and Ng (2005), ζ̂3 and ζ̂4 are constructed using a non-

parametric kernel estimator of the relevant long-run covariance matrices; the triangular Bartlett

kernel and a data-dependent bandwidth, selected according to the method of Andrews (1991),

are used.

An alternative test, also based on skewness and kurtosis, was proposed by Lobato and Velasco

(2004). The test statistic is defined as

LV =
nµ̂23
6Ĝ3

+
n(µ̂4 − 3µ̂22)

2

24Ĝ4

, (4)

where Ĝr =
∑n−1

τ=1−n γ̂
r
τ for r = 3, 4 and γ̂τ = (1/n)

∑n
t=|τ |+1(Xt − X̄)(Xt−|τ | − X̄) for τ =

0,±1, . . . ,±(n− 1). An advantage of the test based on LV is that the estimators of the asymp-

totic variance of
√
nµ̂3 and

√
n(µ̂4−3µ̂22) used do not involve any kernel smoothing or truncation

(in contrast to the estimators ζ̂3 and ζ̂4 used in the case of BN ). If X is a Gaussian process,

BN and LV are approximately χ2
2 distributed for large n.

2.3 TEST BASED ON MOMENT CONDITIONS

Bontemps and Meddahi (2005) proposed a test based on moment conditions implied by the

characterization of the normal distribution given in Stein (1972). The test is based on the

statistic

BM =

(
1√
n

n∑
t=1

ĝt

)
Σ̂−1

(
1√
n

n∑
t=1

ĝ′t

)
, (5)

where ĝt = (h3(Zt), . . . , h`(Zt)) for some integer ` > 3, Zt = {nµ̂2/(n−1)}−1/2(Xt− X̄), and Σ̂

is a consistent estimator of the long-run covariance matrix of {ĝt}. Here, hm(·) stands for the

normalized Hermite polynomial of degree m, given by

hm(x) =
√
m!

bm/2c∑
i=0

(−1)ixm−2i

i!(m− 2i)!2i
, −∞ < x <∞, m = 0, 1, 2, . . . ,
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where bac denotes the largest integer not greater than a. Under H0, BM is approximately χ2
`−2

distributed for large n.

As in the case of the BN statistic, Σ̂ is constructed using a Bartlett-kernel estimator with a

data-dependent bandwidth chosen by the method of Andrews (1991). In light of the relatively

poor small-sample size properties of the test reported in Bontemps and Meddahi (2005) for

dependent data when Hermite polynomials of degree higher than 4 are used, we set ` = 4 in

our implementation of the test.

2.4 TESTS BASED ON THE EMPIRICAL DISTRIBUTION FUNCTION

Psaradakis and Vávra (2017) considered a test based on the Anderson–Darling distance statis-

tic involving the weighted quadratic distance of the empirical distribution function of the data

from a Gaussian distribution function. Putting Yt = µ̂
−1/2
2 (Xt − X̄), the test rejects H0 for large

values of the statistic

AD = n

∫ ∞
−∞

{F̂Y (y)− Φ(y)}2

Φ(y){1− Φ(y)}
dΦ(y)

= −n− 1

n

n∑
t=1

(2t− 1) [log Φ(Y(t)) + log{1− Φ(Y(n+1−t))}], (6)

where F̂Y is the empirical distribution function of (Y1, . . . , Yn), Y(1) 6 · · · 6 Y(n) are the order

statistics of (Y1, . . . , Yn), and Φ is the standard normal distribution function. In the sequel, we

also consider tests which reject H0 for large values of the Cramér–von Mises statistic

CM = n

∫ ∞
−∞
{F̂Y (y)− Φ(y)}2dΦ(y) =

1

12n
+

n∑
t=1

(
Φ(Y(t))−

2t− 1

2n

)2

, (7)

or the Kolmogorov–Smirnov statistic

KS =
√
n sup
−∞<y<∞

|F̂Y (y)− Φ(y)|

=
√
n max

16t6n

{
t

n
− Φ(Y(t)),Φ(Y(t))−

t− 1

n
, 0

}
. (8)

Since the asymptotic null distributions of these statistics have a rather complicated structure

in the case of a composite null hypothesis even under i.i.d. conditions (cf. Durbin (1973),

Stephens (1976)), critical values and/or P -values for the tests will be obtained by a suitable

bootstrap procedure. Stute et al. (1993), Babu and Rao (2004), and Kojadinovic and Yan (2012)

also considered bootstrap-based approaches to testing composite hypotheses for i.i.d. data,

while Psaradakis and Vávra (2017) examined the case of linear processes that may exhibit

strong, weak, or negative dependence.
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2.5 TEST BASED ON THE EMPIRICAL CHARACTERISTIC FUNCTION

Epps and Pulley (1983) proposed a class of tests based on the weighted quadratic distance of

the empirical characteristic function of the data from its pointwise limit under the null hypothesis

of normality. Using the density of the N (0, 1/µ̂2) distribution as a weight function (cf. Epps and

Pulley (1983)), the test rejects for large values of the statistic

EP = n

∫ ∞
−∞
|ϕ̂Y (u)− ϕ(u)|2 dΦ(µ̂

1/2
2 u)

=
n√
3

+
1

n

n∑
t=1

n∑
s=1

exp
{
−1

2 (Yt − Ys)2
}
−
√

2
n∑
t=1

exp
(
−1

4Y
2
t

)
(9)

where ϕ̂Y is the empirical characteristic function of (Y1, . . . , Yn) and ϕ is the characteristic

function of Φ.

For Gaussian i.i.d. data, EP is asymptotically distributed as a weighted sum of infinitely many

independent χ2
1 random variables (Baringhaus and Henze (1988)). To the best of our knowl-

edge, the asymptotic distribution of EP has not been established in the case of dependent

data. We will use a bootstrap procedure to obtain critical and/or P -values for the test based on

EP . We note that, in an i.i.d. context, Jiménez-Gamero et al. (2003) and Leucht and Neumann

(2009) examined bootstrap-based inference for statistics (such as EP , AD, and CM ) which

may be expressed in the form of, or be approximated by, degenerate V -statistics involving es-

timated parameters. Leucht (2012) and Leucht and Neumann (2013) give related results for

weakly dependent data.

2.6 TEST BASED ON THE BISPECTRUM

Hinich (1982) proposed a test for Gaussianity of a stochastic process based on its normalized

bispectrum, exploiting the fact that the latter should be identically zero at all frequency pairs if

the process is Gaussian. For some integer k > 1, the test used in the sequel is based on the

statistic

H =
2πn

δM2

k∑
i=1

|f̂b(ω1,i, ω2,i)|2

f̂s(ω1,i)f̂s(ω2,i)f̂s(ω1,i + ω2,i)
, (10)

where f̂s and f̂b are kernel-smoothed estimators of the spectral and bispectral density, re-

spectively, of X , M is a bandwidth parameter associated with f̂b, δ is a normalizing constant

associated with f̂b, and Ωk = {(ω1,i, ω2,i), i = 1, . . . , k} is a set of frequency pairs contained in

Ω = {(ω1, ω2) : 0 6 ω1 6 π, 0 6 ω2 6 min{ω1, 2(π − ω1)}} (see Berg et al. (2010) for more

details). If X is a Gaussian process, H is approximately χ2
2k distributed for large n.

In the sequel, we follow Berg et al. (2010) in taking Ωk to be a subset of the grid of points

contained in their Fig. 2, as well as in using a trapezoidal flat–top kernel function and a right-
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pyramidal frustrum-shaped kernel function to construct the estimators f̂s and f̂b, respectively.

A common bandwidth M = bn1/3c is used for f̂s and f̂b, and we set k = bn/10c. We note that

Berg et al. (2010) considered using an autoregressive sieve bootstrap approximation to the null

distribution of H as an alternative to the χ2
2k large-sample approximation. Also note that, unlike

the testing procedures discussed previously, which assess normality of the one-dimensional

marginal distribution of X , the test based on H assesses Gaussianity of the process X (i.e.,

normality of all finite-dimensional distributions of X ).

3. BOOTSTRAP TESTS
Some of the normality tests described in Section 2, although asymptotically valid for dependent

data, tend to suffer from substantial level distortion in finite samples (e.g., the bispectrum-based

test). For some other tests, large-sample approximations to the null distribution of the relevant

test statistic may not be straightforward to obtain because of the dependence in the data and

the composite null hypothesis (e.g., tests based on the empirical distribution function or the

empirical characteristic function). A convenient way of overcoming these difficulties is to use

a suitable bootstrap procedure to approximate the sampling distribution of the test statistic of

interest under the null hypothesis. In this paper, we propose to use the autoregressive sieve

bootstrap to obtain such an approximation and construct bootstrap tests for normality.

The typical assumption underlying the autoregressive sieve bootstrap is that X admits the rep-

resentation

Xt − µX =
∞∑
j=1

φj(Xt−j − µX) + εt, (11)

where {φj}∞j=1 is an absolutely summable sequence of real numbers and {εt}∞t=−∞ are i.i.d.,

real-valued, zero-mean random variables with finite, positive variance. The idea is to approxi-

mate (11) by a finite-order autoregressive model, the order of which increases simultaneously

with the sample size at an appropriate rate, and use this model as the basis of a semi-

parametric bootstrap scheme (see, inter alia, Kreiss (1992), Paparoditis (1996), Bühlmann

(1997), Choi and Hall (2000), and Kreiss et al. (2011)).

Note that, under the additional assumption that the function φ(z) = 1−
∑∞

j=1 φjz
j has no zeros

inside or on the complex unit circle, (11) is equivalent to assuming that X satisfies

Xt = µX +
∞∑
j=0

ψjεt−j , ψ0 = 1, (12)

for some absolutely summable sequence of real numbers {ψj}∞j=1. Hence, it is easy to see that

the normality hypothesis (1) holds if εt is normally distributed. Conversely, (1) implies normality

of the distribution of εt, which in turn implies Gaussianity of the causal linear process X defined

by (12).
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Letting S = S(X1, . . . , Xn) be a statistic for testing the normality hypothesis (1), the algorithm

used to obtain an autoregressive sieve bootstrap approximation to the null distribution of S can

be described by the following steps:

S1. For some integer p > 1 (chosen as a function of n so that p increases with n but at a slower

rate), compute the pth order least-squares estimate (φ̂p1, . . . , φ̂pp) of the autoregressive

coefficients for X by minimizing

(n− 2p)−1
n∑

t=p+1

(Xt − X̄)−
p∑
j=1

φpj(Xt−j − X̄)


2

. (13)

S2. Given some initial values (X∗−p+1, . . . , X
∗
0 ), generate bootstrap pseudo-observations (X∗1 , . . . , X

∗
n)

via the recursion

X∗t − X̄ =

p∑
j=1

φ̂pj(X
∗
t−j − X̄) + σ̂pε

∗
t , t = 1, 2, . . . , (14)

where σ̂2p is the minimum value of (13) and {ε∗t } are independent random variables each

having the N (0, 1) distribution. Define the bootstrap analogue of S by the plug-in rule as

S∗ = S(X∗1 , . . . , X
∗
n) (i.e., by applying the definition of S to the bootstrap pseudo-data).

S3. Repeat step S2 independently B times to obtain a collection of B replicates (S∗1 , . . . , S
∗
B)

of S∗. The empirical distribution of (S∗1 , . . . , S
∗
B) serves as an approximation to the null

distribution of S.

The (simulated) bootstrap P -value for a test that rejects the null hypothesis (1) for large values

of S is computed as the proportion of (S∗1 , . . . , S
∗
B) greater than the observed value of S. Hence,

for a given nominal level α (0 < α < 1), the bootstrap test rejects H0 if the bootstrap P -value

does not exceed α. Equivalently, the bootstrap test of level α rejects H0 if S exceeds the

(b(B + 1)(1− α)c)th largest of (S∗1 , . . . , S
∗
B).

Some remarks about the bootstrap procedure are in order.

(i) The order p of the autoregressive sieve in step S1 may be selected from a suitable range of

values by means of the Akaike information criterion (AIC), so as to minimize log σ̂2p + 2p/n. Un-

der mild regularity conditions, a data-dependent choice of p based on the AIC is asymptotically

efficient (see, inter alia, Shibata (1980), Lee and Karagrigoriou (2001), and Poskitt (2007)), and

satisfies the growth conditions on the sieve order that are typically required for the asymptotic

validity of the sieve bootstrap for a large class of statistics (Psaradakis (2016)).

(ii) Although least-squares estimates (φ̂p1, . . . , φ̂pp, σ̂
2
p) of the parameters of the approximating

autoregression are used in step S2 to construct X∗t , asymptotically equivalent estimates, such

as those obtained from the empirical Yule–Walker equations, may alternatively be used. The

Yule–Walker estimator is theoretically attractive because its use guarantees that the bootstrap
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pseudo-observations (X∗1 , . . . , X
∗
n) are generated from a causal (bootstrap) autoregressive pro-

cess, but is known to be significantly biased in small samples compared to the least-squares

estimator (see, e.g., Tjøstheim and Paulsen (1983) and Paulsen and Tjøstheim (1985)).

(iii) By requiring ε∗t in (14) to be normally distributed, the bootstrap pseudo-data {X∗t } are

constructed in a way which reflects the normality hypothesis under test even though X may not

satisfy (1). This is important for ensuring that the bootstrap test has reasonable power against

departures from H0 (see, e.g., Lehmann and Romano (2005, Sec. 15.6)).

(iv) Some variations of the bootstrap procedure may be obtained by varying the way in which

the initial values (X∗−p+1, . . . , X
∗
0 ) for the recursion (14) are chosen in step S2. For instance,

one possibility is to calculate (X∗−p+1, . . . , X
∗
0 ) from the moving-average representation of the

fitted autoregressive model for Xt−X̄ (Paparoditis and Streitberg (1992)). Another possibility is

to set X∗t = Xt+q for t 6 0, where q is chosen randomly from the set of integers {p, p+1, . . . , n}
(e.g., Poskitt (2008)). In the sequel, we follow the suggestion of Bühlmann (1997) and set

X∗t = X̄ for t 6 0, generate n + n0 bootstrap replicates X∗t according to (14), with n0 = 100,

and then discard the first n0 replicates to minimize the effect of initial values.

We conclude this section by noting that the linear structure assumed in (11) or (12) may ar-

guably be considered as somewhat restrictive. However, since nonlinear processes with a

Gaussian marginal distribution appear to be a rarity (cf. Tong (1990, Sec. 4.2)), the assump-

tion of linear dependence is not perhaps unjustifiable when the objective is to test for marginal

normality.

Moreover, the results of Bickel and Bühlmann (1997) indicate that linearity may not be too oner-

ous a requirement, in the sense that the closure (with respect to certain metrics) of the class

of causal linear processes is quite large; roughly speaking, for any strictly stationary nonlinear

process, there exists another process in the closure of causal linear processes having identical

sample paths with probability exceeding 0.36. This also suggests that the autoregressive sieve

bootstrap is likely to yield reasonably good approximations within a class of processes larger

than that associated with (11) or (12). In fact, Kreiss et al. (2011) have demonstrated that the

autoregressive sieve bootstrap is asymptotically valid for a general class of statistics associ-

ated with strictly stationary, weakly dependent, regular processes having positive and bounded

spectral densities. Such processes can always be represented in the form (11) and (12), with

{εt} being a strictly stationary sequence of uncorrelated (although not necessarily indepen-

dent) random variables. Then, the autoregressive coefficients in (11) may also be thought of

as the limit, as p tends to infinity, of the coefficients of the best linear predictor (in a mean-

square sense) of Xt−µX based on the finite past (Xt−1−µX , . . . , Xt−p−µX) of length p. The

finite-predictor coefficients of X are uniquely determined for each fixed integer p > 1 as long

as σ2X > 0 and Cov(Xt, Xt−τ ) → 0 as τ → ∞ (cf. Brockwell and Davis (1991, Sec. 5.1)), and

converge to the corresponding infinite-predictor coefficients as p → ∞ (cf. Pourahmadi (2001,

Sec. 7.6), Kreiss et al. (2011)).
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4. SIMULATION STUDY
In this section we present and discuss the results of a simulation study examining the finite-

sample properties of the normality tests described earlier under various data-generating mech-

anisms.

4.1 EXPERIMENTAL DESIGN

In the first set of experiments, we examine the performance of normality tests under different

patterns of dependence by considering artificial data generated according to the ARMA models

M1: Xt = 0.8Xt−1 + εt,

M2: Xt = 0.6Xt−1 − 0.5Xt−2 + εt,

M3: Xt = 0.6Xt−1 + 0.3εt−1 + εt.

Here, and throughout this section, {εt} are i.i.d. random variables the common distribution of

which is either standard normal (labelled N in the various tables) or generalized lambda with

quantile function Qε(w) = λ1 + (1/λ2){wλ3 − (1− w)λ4}, 0 < w < 1, standardized to have zero

mean and unit variance (see Ramberg and Schmeiser (1974)). The parameter values of the

generalized lambda distribution used in the experiments are taken from Bai and Ng (2005) and

can be found in Table 1, along with the corresponding coefficients of skewness and kurtosis;

the distributions S1–S3 are symmetric, whereas A1–A4 are asymmetric.

In addition, we consider artificial data generated according to the transformation model

M4: Xt = Φ−1(Fξ(ξt)), ξt = θ|ξt−1|+ εt, εt ∼ N (0, 1), θ = 0.5,

where Fξ is the distribution function of ξt. The process {Xt} obtained from the threshold au-

toregressive process {ξt} through the composite function Φ−1 ◦ Fξ does not admit the repre-

sentation (11) or (12) (with respect to i.i.d. innovations), but satisfies the null hypothesis since

Xt ∼ N (0, 1) for each t. Note that {ξt} is strictly stationary with

Fξ(u) =
{

2(1− θ2)/π
}1/2 ∫ u

−∞
exp

{
−(1− θ2)x2/2

}
Φ(θx)dx, −∞ < u <∞,

for all |θ| < 1 (Anděl and Ranocha (2005)).

The effect of nonlinearity on the properties of the tests is explored further in a second set of

experiments by using artificial data from the models

M5: Xt = (0.9Xt−1 + εt)I(|Xt−1| 6 1)− (0.3Xt−1 + 2εt)I(|Xt−1| > 1),

M6: Xt = (0.8Xt−1 + εt){1− Λ(Xt−1)} − (0.8Xt−1 + 2εt)Λ(Xt−1),
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M7: Xt = ηtεt, η2t = 0.05 + 0.1X2
t−1 + 0.85η2t−1,

M8: Xt = 0.7Xt−2εt−1 + εt,

where Λ(x) = 1/(1 + e−x) is the standard logistic function and I(A) denotes the indicator of

the event A. M5 is a threshold autoregressive model, M6 is a smooth-transition autoregressive

model, M7 is a generalized autoregressive conditionally heteroskedastic model, and M8 is a bi-

linear model. In all four cases, {Xt} does not admit the representation (11) or (12); furthermore,

the distribution of Xt is non-Gaussian even if εt is normally distributed.

For each design point, 1,000 independent realizations of {Xt} of length 100 + n, with n ∈
{100, 200}, are generated. The first 100 data points of each realization are then discarded in

order to eliminate start-up effects and the remaining n data points are used to compute the

value of the test statistics defined in (2)–(10). In the case of bootstrap tests, the order of the

autoregressive sieve is determined by minimizing the AIC in the range 1 6 p 6 b10 log10 nc,
while the number of bootstrap replications is B = 199. (We note that using a larger number of

bootstrap replications did not change the results substantially. Hall (1986) and Jöckel (1986)

provide theoretical explanations of the ability of simulation-based inference procedures to yield

good results for relatively small values of the simulation size).

4.2 SIMULATION RESULTS

The Monte Carlo rejection frequencies of normality tests at the 5% significance level (α =

0.05) are reported in Tables 2–9. Asymptotic tests (based on JB, BN, LV , BM , and H) rely

on critical values from the relevant chi-square distribution; bootstrap tests use critical values

obtained by an autoregressive sieve boostrap procedure. The results over all design points

which do not satisfy the null hypothesis are summarized graphically in the form of the box plot

of the empirical rejection frequencies shown in Figure 1 (bootstrap tests are indicated by the

subscript B).

Inspection of the results in Tables 2–4 (under Gaussian innovations) and in Table 5 reveals

that the test based on H suffers from severe level distortion across all four data-generating

mechanisms when asymptotic critical values are used. Among the remaining asymptotic tests,

LV has an overall advantage under the null hypothesis for both of the sample sizes consid-

ered. The BN and BM tests tend to be too liberal and, rather surprisingly, do not perform

substantially better than the JB test, which relies on the assumption of i.i.d. observations. A

possible explanation for the unsatisfactory level performance of the tests based on BN and

BM may lie with the kernel estimators of the relevant long-run covariance matrices that are

used in their construction. Inference procedures based on such estimators are widely reported

to have poor small-sample properties, and related tests are often found to exhibit substantial

level distortions in a variety of settings (see, e.g., den Haan and Levin (1997), Müller (2014)).

As expected perhaps, bootstrap tests are generally more successful than asymptotic tests at
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controlling the discrepancy between the exact and nominal probabilities of Type I error. The

empirical rejection frequencies of bootstrap tests are insignificantly different from the nominal

0.05 value in the vast majority of cases.

The results in Tables 2–4 (under non-Gaussian innovations) and in Tables 6–9 show that the

bootstrap versions of the JB and LV tests tend to outperform all other tests in terms of em-

pirical power, albeit only marginally in some cases, regardless of the dependence structure in

the data and the distribution of the innovations. In particular, as can be easily seen in Figure 1,

for processes with a non-Gaussian marginal distribution, the bootstrap JB and LV tests have

the highest average rejection frequencies (indicated by black diamonds) across all tests, and

smaller interquartile range (edges of coloured areas) than the asymptotic LV test. However,

keeping in mind computational aspects and level accuracy, the latter test offers an attractive

alternative to bootstrap tests. Among tests based on the empirical distribution function, which

are also competitive in terms of power, the AD and CM tests tend to have a slight advantage

over the KS test, and perform quite similarly to the EP test based on the empirical charac-

teristic function. The rejection frequencies of the asymptotic and bootstrap BN and BM tests

have distributions which are highly positively skewed (cf. Figure 1), which means that the tests

are powerful only for some design points. Rather unsurprisingly, the rejection frequencies of

tests improve with increasing skewness and leptokurtosis in the innovation distribution, as well

as with an increasing sample size. It is worth noting that, although the asymptotic versions of

some tests may appear in some cases to have similar or even higher empirical power than the

corresponding bootstrap tests, such comparisons are not straightforward because asymptotic

tests do not generally control the probability of Type I error as well as bootstrap tests do. (The

asymptotic test based on H is not included in Figure 1 because of its excessive level distortion).

Finally, the simulation results reveal that deviations from the linearity assumptions which un-

derline the autoregressive sieve bootstrap procedure do not have an adverse effect on the

properties of bootstrap tests. Such tests generally work well even for data that are generated

by processes which are not representable as in (11) or (12). As can be seen in Table 5, in

the case of artificial time series from M4, the marginal distribution of which is Gaussian, most

bootstrap tests have rejection frequencies that do not differ substantially from the nominal level

(the AD and CM tests have a tendency to over-reject). Similarly, as can be seen in Tables 6–

9, the bootstrap versions of tests other than BN and BM have high rejection frequencies for

data with a non-Gaussian marginal distribution generated according to the non-linear models

M5–M8.

5. SUMMARY
This paper has considered the problem of testing for normality of the one-dimensional marginal

distribution of a strictly stationary and weakly dependent stochastic process. We have ex-
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amined the properties of nine normality tests, only some of which have been designed to be

robust with respect to dependence in the data. Since conventional large-sample approxima-

tions to the null distributions of some of the test statistics are either unknown or inaccurate

under dependence, we have explored how an autoregressive sieve bootstrap procedure may

be used to obtain P -values and/or critical values for the tests. An extensive Monte Carlo study

has revealed that the bootstrap version of the classical skewness–kurtosis test provides the

best overall performance across the asymptotic and bootstrap tests investigated. The Lobato–

Velasco modification of the cumulant-based test is a good alternative among tests that rely on

asymptotic critical values.
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Table 1: Innovation Distributions
λ1 λ2 λ3 λ4 skewness kurtosis

N – – – – 0.0 3.0
S1 0.000000 -1.000000 -0.080000 -0.080000 0.0 6.0
S2 0.000000 -0.397912 -0.160000 -0.160000 0.0 11.6
S3 0.000000 -1.000000 -0.240000 -0.240000 0.0 126.0
A1 0.000000 -1.000000 -0.007500 -0.030000 1.5 7.5
A2 0.000000 -1.000000 -0.100900 -0.180200 2.0 21.1
A3 0.000000 -1.000000 -0.001000 -0.130000 3.2 23.8
A4 0.000000 -1.000000 -0.000100 -0.170000 3.8 40.7

Figure 1: Empirical Rejection Frequencies of Normality Tests: Power

Note: The top and bottom of each blue box indicates the 25th and 75th percentile, respectively, of the empirical
rejection frequencies, the black diamond indicates the mean value, and the whiskers indicate the 10th and 90th
percentiles.
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Table 2: Empirical Rejection Frequencies of Normality Tests Under M1
Asymptotic Tests Bootstrap Tests

sample distr. JB BN LV BM H JB BN LV BM H AD CM KS EP

n = 100 N 0.09 0.08 0.02 0.07 0.31 0.04 0.05 0.04 0.05 0.03 0.04 0.04 0.04 0.05
S1 0.22 0.05 0.10 0.04 0.48 0.16 0.03 0.15 0.04 0.13 0.11 0.11 0.11 0.11
S2 0.32 0.09 0.17 0.09 0.60 0.25 0.06 0.23 0.07 0.24 0.21 0.21 0.18 0.19
S3 0.44 0.06 0.29 0.06 0.69 0.38 0.04 0.35 0.04 0.34 0.29 0.27 0.23 0.28
A1 0.39 0.13 0.22 0.11 0.68 0.30 0.09 0.29 0.09 0.31 0.24 0.22 0.18 0.26
A2 0.46 0.12 0.29 0.12 0.72 0.37 0.08 0.35 0.09 0.37 0.33 0.33 0.28 0.34
A3 0.74 0.34 0.49 0.34 0.93 0.64 0.23 0.60 0.27 0.64 0.57 0.56 0.47 0.61
A4 0.81 0.34 0.59 0.34 0.94 0.73 0.24 0.70 0.28 0.72 0.68 0.64 0.55 0.71

n = 200 N 0.16 0.08 0.04 0.08 0.31 0.07 0.06 0.06 0.06 0.04 0.06 0.05 0.05 0.07
S1 0.34 0.05 0.16 0.03 0.53 0.20 0.03 0.20 0.02 0.19 0.11 0.10 0.07 0.11
S2 0.51 0.06 0.29 0.07 0.66 0.35 0.04 0.35 0.04 0.30 0.25 0.24 0.21 0.25
S3 0.63 0.07 0.45 0.08 0.74 0.52 0.05 0.51 0.06 0.44 0.39 0.38 0.34 0.38
A1 0.68 0.32 0.41 0.34 0.82 0.51 0.25 0.48 0.27 0.40 0.45 0.42 0.35 0.46
A2 0.67 0.21 0.45 0.21 0.80 0.52 0.14 0.52 0.16 0.46 0.45 0.44 0.38 0.46
A3 0.96 0.67 0.81 0.67 0.98 0.86 0.53 0.85 0.55 0.84 0.86 0.81 0.74 0.88
A4 0.99 0.68 0.87 0.68 1.00 0.93 0.56 0.92 0.60 0.91 0.92 0.88 0.82 0.93

N
O

R
M

A
L

IT
Y

T
E

S
T

S
F

O
R

D
E

P
E

N
D

E
N

T
D

A
TA

W
orking

P
aperN

B
S

12/2017
21



Table 3: Empirical Rejection Frequencies of Normality Tests Under M2
Asymptotic Tests Bootstrap Tests

sample distr. JB BN LV BM H JB BN LV BM H AD CM KS EP

n = 100 N 0.03 0.07 0.03 0.06 0.28 0.05 0.04 0.05 0.05 0.04 0.04 0.03 0.04 0.03
S1 0.33 0.06 0.32 0.05 0.46 0.38 0.04 0.36 0.04 0.15 0.24 0.19 0.15 0.24
S2 0.47 0.07 0.45 0.06 0.55 0.50 0.03 0.49 0.04 0.23 0.38 0.34 0.28 0.39
S3 0.68 0.07 0.67 0.07 0.66 0.71 0.03 0.70 0.03 0.36 0.55 0.52 0.41 0.55
A1 0.64 0.39 0.66 0.37 0.68 0.69 0.28 0.70 0.31 0.29 0.63 0.57 0.52 0.69
A2 0.66 0.14 0.65 0.15 0.68 0.70 0.09 0.70 0.10 0.35 0.55 0.52 0.42 0.59
A3 0.97 0.62 0.97 0.62 0.92 0.98 0.48 0.98 0.53 0.68 0.98 0.97 0.91 0.99
A4 0.97 0.56 0.97 0.55 0.95 0.99 0.43 0.99 0.47 0.76 0.98 0.96 0.91 0.99

n = 200 N 0.05 0.11 0.05 0.09 0.27 0.05 0.06 0.05 0.06 0.04 0.05 0.06 0.06 0.06
S1 0.53 0.04 0.51 0.05 0.51 0.54 0.02 0.53 0.02 0.16 0.32 0.26 0.19 0.32
S2 0.74 0.08 0.73 0.08 0.67 0.76 0.03 0.73 0.03 0.29 0.55 0.50 0.41 0.59
S3 0.87 0.12 0.86 0.11 0.72 0.88 0.03 0.87 0.03 0.46 0.75 0.71 0.61 0.77
A1 0.97 0.77 0.96 0.76 0.76 0.96 0.61 0.96 0.64 0.38 0.92 0.90 0.78 0.95
A2 0.91 0.28 0.91 0.29 0.78 0.91 0.17 0.91 0.18 0.48 0.84 0.80 0.69 0.86
A3 1.00 0.87 1.00 0.87 0.99 1.00 0.78 1.00 0.80 0.88 1.00 1.00 1.00 1.00
A4 1.00 0.83 1.00 0.83 0.99 1.00 0.74 1.00 0.77 0.90 1.00 1.00 1.00 1.00
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Table 4: Empirical Rejection Frequencies of Normality Tests Under M3
Asymptotic Tests Bootstrap Tests

sample distr. JB BN LV BM H JB BN LV BM H AD CM KS EP

n = 100 N 0.08 0.08 0.03 0.07 0.33 0.05 0.04 0.04 0.05 0.05 0.04 0.03 0.03 0.05
S1 0.27 0.04 0.18 0.04 0.52 0.22 0.02 0.21 0.03 0.14 0.16 0.13 0.11 0.15
S2 0.41 0.08 0.32 0.07 0.57 0.38 0.05 0.37 0.05 0.21 0.28 0.26 0.22 0.27
S3 0.51 0.08 0.43 0.07 0.65 0.47 0.05 0.47 0.05 0.34 0.39 0.37 0.32 0.38
A1 0.59 0.28 0.42 0.28 0.74 0.52 0.22 0.49 0.23 0.29 0.47 0.43 0.36 0.50
A2 0.53 0.16 0.43 0.13 0.71 0.49 0.10 0.48 0.10 0.36 0.43 0.40 0.37 0.41
A3 0.91 0.58 0.82 0.58 0.92 0.87 0.45 0.88 0.49 0.68 0.89 0.86 0.77 0.91
A4 0.96 0.56 0.88 0.54 0.96 0.92 0.43 0.92 0.47 0.76 0.94 0.90 0.85 0.94

n = 200 N 0.10 0.10 0.04 0.09 0.34 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.06 0.06
S1 0.45 0.06 0.30 0.06 0.52 0.33 0.04 0.34 0.04 0.17 0.19 0.18 0.15 0.19
S2 0.64 0.08 0.52 0.08 0.64 0.53 0.04 0.54 0.04 0.29 0.37 0.36 0.28 0.37
S3 0.78 0.12 0.69 0.11 0.77 0.72 0.07 0.72 0.07 0.46 0.58 0.55 0.47 0.59
A1 0.87 0.59 0.75 0.60 0.81 0.78 0.44 0.76 0.46 0.45 0.76 0.72 0.61 0.77
A2 0.83 0.29 0.70 0.28 0.81 0.75 0.18 0.74 0.20 0.51 0.69 0.66 0.59 0.71
A3 1.00 0.94 0.99 0.94 0.99 1.00 0.86 1.00 0.88 0.87 1.00 1.00 0.98 1.00
A4 1.00 0.92 1.00 0.92 1.00 1.00 0.85 1.00 0.87 0.93 1.00 1.00 0.99 1.00
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Table 5: Empirical Rejection Frequencies of Normality Tests Under M4
Asymptotic Tests Bootstrap Tests

sample distr. JB BN LV BM H JB BN LV BM H AD CM KS EP

n = 100 N 0.02 0.13 0.02 0.11 0.23 0.04 0.07 0.03 0.07 0.06 0.09 0.08 0.03 0.08
n = 200 N 0.02 0.12 0.02 0.11 0.25 0.04 0.06 0.03 0.06 0.06 0.11 0.10 0.03 0.07
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Table 6: Empirical Rejection Frequencies of Normality Tests Under M5
Asymptotic Tests Bootstrap Tests

sample distr. JB BN LV BM H JB BN LV BM H AD CM KS EP

n = 100 N 0.35 0.08 0.34 0.07 0.40 0.37 0.03 0.37 0.04 0.13 0.26 0.25 0.19 0.25
S1 0.79 0.12 0.78 0.13 0.59 0.79 0.07 0.80 0.08 0.33 0.69 0.65 0.54 0.70
S2 0.86 0.14 0.86 0.14 0.65 0.87 0.08 0.87 0.11 0.43 0.79 0.76 0.62 0.78
S3 0.92 0.15 0.90 0.14 0.71 0.92 0.09 0.92 0.10 0.49 0.88 0.86 0.77 0.89
A1 0.78 0.07 0.78 0.07 0.65 0.80 0.03 0.79 0.04 0.39 0.66 0.59 0.52 0.64
A2 0.81 0.11 0.80 0.12 0.64 0.83 0.07 0.83 0.08 0.42 0.75 0.70 0.60 0.75
A3 0.92 0.07 0.91 0.07 0.79 0.92 0.04 0.92 0.05 0.58 0.84 0.76 0.69 0.80
A4 0.91 0.08 0.90 0.08 0.78 0.91 0.05 0.91 0.06 0.60 0.86 0.77 0.70 0.83

n = 200 N 0.52 0.13 0.51 0.13 0.42 0.52 0.05 0.52 0.06 0.16 0.42 0.40 0.29 0.43
S1 0.94 0.25 0.93 0.27 0.66 0.93 0.12 0.94 0.13 0.38 0.90 0.87 0.76 0.91
S2 0.98 0.24 0.98 0.24 0.74 0.98 0.12 0.98 0.13 0.48 0.96 0.96 0.89 0.97
S3 0.99 0.25 0.99 0.25 0.82 0.99 0.12 0.99 0.13 0.60 0.99 0.98 0.96 0.99
A1 0.95 0.16 0.95 0.16 0.73 0.95 0.06 0.95 0.08 0.49 0.90 0.83 0.75 0.88
A2 0.98 0.19 0.98 0.19 0.79 0.98 0.08 0.98 0.09 0.55 0.97 0.96 0.90 0.97
A3 0.99 0.15 0.99 0.16 0.88 0.99 0.07 0.99 0.07 0.72 0.97 0.93 0.91 0.97
A4 0.99 0.13 0.99 0.13 0.90 0.99 0.04 0.99 0.06 0.75 0.99 0.97 0.96 0.98
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Table 7: Empirical Rejection Frequencies of Normality Tests Under M6
Asymptotic Tests Bootstrap Tests

sample distr. JB BN LV BM H JB BN LV BM H AD CM KS EP

n = 100 N 0.86 0.24 0.85 0.24 0.86 0.87 0.19 0.87 0.19 0.68 0.91 0.92 0.86 0.88
S1 0.95 0.25 0.95 0.24 0.88 0.95 0.16 0.95 0.17 0.71 0.97 0.96 0.93 0.96
S2 0.97 0.24 0.97 0.23 0.88 0.97 0.15 0.97 0.17 0.76 0.98 0.99 0.96 0.98
S3 0.98 0.25 0.98 0.25 0.92 0.98 0.17 0.98 0.18 0.79 0.99 0.99 0.97 0.99
A1 0.93 0.33 0.93 0.32 0.87 0.93 0.20 0.93 0.21 0.69 0.92 0.92 0.89 0.92
A2 0.95 0.27 0.95 0.26 0.89 0.95 0.16 0.95 0.18 0.73 0.96 0.95 0.91 0.97
A3 1.00 0.72 1.00 0.72 0.94 1.00 0.62 1.00 0.66 0.81 1.00 0.99 0.97 1.00
A4 1.00 0.72 1.00 0.71 0.97 1.00 0.60 1.00 0.64 0.89 1.00 1.00 0.99 1.00

n = 200 N 0.99 0.31 0.99 0.31 0.96 0.99 0.17 0.99 0.19 0.81 1.00 1.00 0.99 0.99
S1 1.00 0.32 1.00 0.31 0.95 1.00 0.17 1.00 0.18 0.87 1.00 1.00 1.00 1.00
S2 1.00 0.31 1.00 0.31 0.98 1.00 0.17 1.00 0.18 0.88 1.00 1.00 1.00 1.00
S3 1.00 0.21 1.00 0.20 0.98 1.00 0.09 1.00 0.10 0.93 1.00 1.00 1.00 1.00
A1 1.00 0.71 1.00 0.70 0.96 1.00 0.53 1.00 0.55 0.84 0.99 0.99 0.99 1.00
A2 1.00 0.38 1.00 0.37 0.98 1.00 0.22 1.00 0.25 0.89 1.00 1.00 1.00 1.00
A3 1.00 0.88 1.00 0.89 1.00 1.00 0.81 1.00 0.82 0.96 1.00 1.00 1.00 1.00
A4 1.00 0.89 1.00 0.88 1.00 1.00 0.82 1.00 0.84 0.97 1.00 1.00 1.00 1.00
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Table 8: Empirical Rejection Frequencies of Normality Tests Under M7
AsymptoticTests Bootstrap Tests

sample distr. JB BN LV BM H JB BN LV BM H AD CM KS EP

n = 100 N 0.09 0.09 0.09 0.10 0.39 0.07 0.05 0.11 0.05 0.21 0.07 0.07 0.06 0.08
S1 0.64 0.11 0.64 0.11 0.58 0.67 0.05 0.66 0.06 0.36 0.52 0.50 0.37 0.53
S2 0.79 0.14 0.79 0.14 0.63 0.80 0.07 0.80 0.09 0.44 0.73 0.70 0.61 0.75
S3 0.92 0.17 0.91 0.16 0.71 0.92 0.09 0.92 0.11 0.56 0.90 0.88 0.81 0.90
A1 0.94 0.76 0.94 0.75 0.70 0.95 0.63 0.95 0.64 0.51 0.97 0.96 0.91 0.98
A2 0.92 0.29 0.92 0.29 0.74 0.92 0.15 0.92 0.18 0.55 0.90 0.88 0.83 0.92
A3 1.00 0.91 1.00 0.90 0.93 1.00 0.83 1.00 0.85 0.82 1.00 1.00 1.00 1.00
A4 1.00 0.92 1.00 0.90 0.95 1.00 0.84 1.00 0.86 0.86 1.00 1.00 1.00 1.00

n = 200 N 0.16 0.07 0.16 0.06 0.62 0.17 0.02 0.17 0.02 0.36 0.11 0.08 0.07 0.10
S1 0.90 0.22 0.90 0.22 0.78 0.90 0.08 0.89 0.10 0.59 0.82 0.79 0.66 0.84
S2 0.97 0.27 0.97 0.27 0.84 0.98 0.12 0.98 0.14 0.70 0.96 0.95 0.92 0.96
S3 1.00 0.28 1.00 0.27 0.93 1.00 0.11 1.00 0.13 0.76 0.99 0.99 0.98 0.99
A1 1.00 0.91 1.00 0.91 0.89 1.00 0.83 1.00 0.83 0.74 1.00 1.00 0.99 1.00
A2 1.00 0.45 1.00 0.45 0.90 0.99 0.28 0.99 0.30 0.78 0.99 0.99 0.97 1.00
A3 1.00 0.96 1.00 0.97 0.98 1.00 0.93 1.00 0.94 0.93 1.00 1.00 1.00 1.00
A4 1.00 0.96 1.00 0.96 0.99 1.00 0.93 1.00 0.93 0.95 1.00 1.00 1.00 1.00
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Table 9: Empirical Rejection Frequencies of Normality Tests Under M8
Asymptotic Tests Bootstrap Tests

sample distr. JB BN LV BM H JB BN LV BM H AD CM KS EP

n = 100 N 0.34 0.06 0.34 0.04 0.61 0.36 0.02 0.36 0.02 0.37 0.23 0.21 0.15 0.24
S1 0.63 0.08 0.63 0.08 0.69 0.66 0.05 0.66 0.06 0.48 0.56 0.54 0.45 0.58
S2 0.75 0.11 0.75 0.11 0.75 0.77 0.08 0.76 0.08 0.53 0.72 0.69 0.58 0.73
S3 0.82 0.14 0.82 0.13 0.75 0.84 0.08 0.84 0.10 0.57 0.80 0.77 0.71 0.80
A1 0.79 0.23 0.79 0.23 0.78 0.81 0.16 0.81 0.17 0.61 0.79 0.76 0.68 0.80
A2 0.80 0.17 0.80 0.18 0.77 0.82 0.09 0.82 0.11 0.59 0.80 0.78 0.67 0.80
A3 0.98 0.45 0.98 0.44 0.89 0.97 0.36 0.97 0.36 0.75 0.99 0.99 0.97 0.99
A4 0.99 0.43 0.99 0.42 0.93 0.99 0.33 0.99 0.34 0.82 0.99 0.99 0.98 1.00

n = 200 N 0.58 0.05 0.57 0.06 0.76 0.58 0.02 0.58 0.02 0.50 0.34 0.30 0.22 0.37
S1 0.88 0.17 0.88 0.16 0.85 0.89 0.07 0.89 0.08 0.65 0.83 0.79 0.69 0.83
S2 0.96 0.22 0.96 0.22 0.87 0.96 0.09 0.96 0.10 0.70 0.95 0.93 0.88 0.95
S3 0.99 0.22 0.99 0.22 0.91 0.99 0.09 0.99 0.11 0.78 0.99 0.98 0.94 0.99
A1 0.98 0.41 0.98 0.41 0.87 0.97 0.24 0.97 0.25 0.71 0.98 0.98 0.92 0.98
A2 0.98 0.28 0.98 0.29 0.90 0.98 0.14 0.98 0.16 0.77 0.98 0.97 0.95 0.98
A3 1.00 0.58 1.00 0.56 0.98 1.00 0.43 1.00 0.45 0.91 1.00 1.00 1.00 1.00
A4 1.00 0.58 1.00 0.57 0.98 1.00 0.42 1.00 0.43 0.93 1.00 1.00 1.00 1.00
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