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Abstract
This article tests the validity of underlying assumptions (i.e. lin-

earity and normality) of UC-ARIMA models for trend-cycle de-

compositions using macroeconomic variables from 16 OECD

countries. Clear and overwhelming evidence of non-normality

and non-linearity is found. Our results thus cast doubts on the ad-

equacy of the filtered cyclical component from this type of model.
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1. INTRODUCTION
The decomposition of economic variables (e.g. real GDP) into trend and cycle components

plays a fundamental role in economics. Although various methods have been developed in

the literature, Gaussian linear unobserved component ARIMA (UC-ARIMA) models of Harvey

(1985) have become very popular (see also Watson (1986), Clark (1987), Harvey and Jaeger

(1993), Kuttner (1994), Orphanides and van Norden (2002), Morley, Nelson, and Zivot (2003),

Harvey and Trimbur (2003)).3 However, there is no guarantee (in general) that Gaussian linear

models can generate the kind of stochastic properties that a particular economic series exhibits.

A model misspecification can, in turn, give rise to misleading inference from both economic and

econometric standpoints. Examples include:

1. The improperly filtered cyclical component (the output gap in case of real GDP) can pro-

vide noisy information about the state of the economy, something which is of much practi-

cal importance for central bankers when setting the policy rates (see, e.g., Taylor (1993)).

2. The Gaussian linear output gap estimates can provide misleading information about the

degree of business cycle coherence (measured, for instance, by the Pearson correlation

coefficient), something which represents a fundamental problem for any monetary union

since if the business cycle movements of the member states are actually not sufficiently

coherent, then the common monetary policy will not be optimal for all members within the

union (see, e.g., Frankel and Rose (1998) and De Haan, Inklaar, and Jong-A-Pin (2008)).

3. Overlooking the distributional aspects of economic variables can lead to output gap es-

timates which might be systematically biased due to a potential bias of the steady-state

growth of real GDP.

4. It is a well known fact that the Kalman filter, used in UC-ARIMA models for updating the

likelihood function and filtering the unobserved states, is optimal among all linear filters

when the noise processes are Gaussian (see Anderson and Moore (1979, Chapter 5)).

However, this is not generally true for non-linear non-Gaussian models (see Harvey (1991,

Chapter 3.7), for which more complicated (e.g. Monte Carlo) filters might be preferred.4

In contrast, non-linear time series models can capture empirically observed phenomena (e.g.

business cycle asymmetry, conditional volatility, etc.) without breaking theoretical concepts

or imposing unrealistic assumptions (see, e.g., Proietti (1998), Kim and Nelson (1999), Kuan,

Huang, and Tsay (2005), or Sinclair (2010)). On the other hand, all modelling steps (i.e. model

selection, identification, estimation, bias correction) of non-linear models are far more complex
3The main reason why this class of models has become so popular in practice is that, after imposing some

restrictions, the UC-ARIMA model encompasses other routinely used methods for a trend-cycle decomposition
such as a linear trend method or a mechanical Hodrick-Prescott filter (see Harvey and Jaeger (1993, p. 233) for
details).

4It might be worth noting that the Kalman filter also provides the optimal MSE estimates of the unobserved states
for non-linear non-normal processes but these estimates are typically not the maximum likelihood ones.
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and complicated as compared to linear counterparts (see, e.g., Boldin (1996), Breunig and Pa-

gan (2004), or Psaradakis (1998)).5 Therefore, using appropriate testing procedures is often

desirable in order to establish the adequacy or otherwise of a Gaussian linear data represen-

tation before exploring more complicated (non-linear) models. The aim of this note is to fill the

gap in the literature and test the validity of two key assumptions (i.e. linearity and normality) of

UC-ARIMA models using a set of OECD macroeconomic variables.

The paper is organized as follows. Section 2 briefly describes UC-ARIMA models used for

trend-cycle decompositions in the literature. Section 3 explains two test statistics used to as-

sess various hypotheses of interest. The empirical results for OECD macroeconomic variables

are presented in Section 4. Section 5 summarizes and concludes.

2. UNOBSERVED COMPONENT ARIMA
MODELS

Following the UC-ARIMA model of Harvey (1985), each observed economic variable (y) is

decomposed into a trend component (µ) and a cyclical component (ψ) according to

yt = µt + ψt + at, (1)

where at ∼ NID(0, σ2a) is a noise component (e.g., due to measurement errors). The trend

component is assumed to be defined as

µt = µt−1 + βt−1 + ηt, (2a)

βt = βt−1 + ζ, (2b)

where βt is a (stochastic) slope of the trend component, ηt ∼ NID(0, σ2η) and ζt ∼ NID(0, σ2ζ ).
6

The cyclical component is given by

ψt = ρ cos(λ)ψt−1 + ρ sin(λ)ψ∗t−1 + ut, (3a)

ψ∗t = −ρ cos(λ)ψt−1 + ρ sin(λ)ψ∗t−1 + u∗t , (3b)

where 0 ≤ ρ ≤ 1 denotes a damping factor, λ is the frequency of the (business) cycle (in

radians), ut ∼ NID(0, σ2u) and u∗t ∼ NID(0, σ∗2u ). The error terms are assumed to be mutually

independent.7 The interested reader is referred to Watson (1986), Clark (1987), Harvey and
5Additionally, the results of Kim and Nelson (1999, p. 325) and Sinclair (2010, p. 13), among others, clearly

show that non-linear models can generate output gap estimates which might be difficult to justify.
6Some authors use an autoregressive representation instead of a random walk for the stochastic slope in (2b)

(see, e.g., Proietti, Musso, and Westermann (2007)). This specification has no effect on our results.
7Note that although this assumption can be weakened it helps to identify the model (see Morley, Nelson, and

Zivot (2003) for an example).
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Jaeger (1993), Kuttner (1994), Orphanides and van Norden (2002), Morley, Nelson, and Zivot

(2003), Harvey and Trimbur (2003), among others, for various modifications of linear Gaussian

UC-ARIMA models used for a trend-cycle decomposition of economic variables.

It can be easily shown that the model in (1)–(3) can be given, after appropriate differencing

(depending on the stochastic trend specification), a stationary Gaussian linear finite-order

ARMA representation. For example, the model in (1)–(3) reduces, after double differencing,

to an ARMA(2,4) process (see Harvey (1985, p. 220)). Without loss of generality (and for the

purpose of hypothesis testing discussed in Section 3), we restrict our attention to the model

written in the following form

xt = c+
∞∑
j=0

ψj(δ) εt−j , t ∈ Z, (4)

{ψj(δ)} is an absolutely summable sequence of weights, assumed to be known functions of a

finite-dimensional vector δ of unknown parameters, {εt} is strictly stationary white noise.

3. TESTING FOR NORMALITY AND

LINEARITY
The main objective of this article is to test the hypothesis that {xt} in (4) is a linear stochastic

process with one-dimensional Gaussian marginal distribution F , that is

HNL
0 : {xt} ∼ linear with F (x) = N(c, σ2), for all x ∈ R, (5)

where N(c, σ2) denotes a normal distribution with mean c and variance σ2.8

Two statistics are applied to test the joint hypothesis HNL
0 : the Lobato-Velasco normality test

and the generalized portmanteau test.

Testing for normality: Lobato and Velasco (2004) proposed a simple statistic for testing nor-

mality based on the sample coefficients of skewness (τ̂ ) and kurtosis (κ̂). The LV statistic

takes the form as follows

LV = n

(
τ̂2

6Ĝ3

+
(κ̂− 3)2

24Ĝ4

)
d−→ χ2(2), (6)

where τ̂ = n−1
∑n

t=1[(Xt − µ̂)/σ̂]3 and κ̂ = n−1
∑n

t=1[(Xt − µ̂)/σ̂]4 are sample coefficients of

skewness and kurtosis calculated from Xn, and Ĝk =
∑n−1

j=1−n ρ̂
k
j , for k ∈ {3, 4}, with ρ̂j is the

estimated autocorrelation at lag j calculated from Xn. The main advantage of the LV test is

the estimation of the long-run variances of skewness and kurtosis which (in contrast to other
8The alternative hypothesis is set in an obvious way.
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tests such as Bai and Ng (2005)) does not involve any bandwidth selection.9

Testing for linearity: Psaradakis and Vávra (2016) modified the portmanteau Q statistic for

testing linearity of the stochastic process in (4).10 When an estimator δ̂ of δ is available, one

may use residuals {ε̂t} in place of the unobservable noise {εt}. The weak form of the i.i.d.

property can be tested using the generalized correlations of the residuals defined for lag k and

(r, s) ∈ {(1, 2), (2, 1), (2, 2)} as follows

ρ̂rs(k) =
γ̂rs(k)√

γ̂rr(0)γ̂ss(0)
, k = 0,±1, . . . ,±(n− 1),

where γ̂rs(k) = n−1
∑n−k

t=1 fr(ε̂t)fs(ε̂t+k) for k > 0, γ̂rs(k) = γ̂sr(−k) for k < 0, and fb(ξt) =

ξbt −n−1(ξb1+ · · ·+ ξbn) for any collection of random variables {ξt} and b ∈ N. The null of linearity

implies that ρrs(k) = 0 for all k 6= 0 and given (r, s) parameters which can be formally tested

using the portmanteau statistic defined as

Qrs(m) = n
m∑
k=1

ρ̂2rs(k)
d−→ χ2(m), (7)

where the integer m << n. The main advantage of a triplet of the Qrs tests (compared to other

non-linearity tests such as the Tsay test, the ARCH test, or the BDS test.) is that it has power

against a large variety of non-linear models such as regime-switching models, bilinear models,

or conditional volatility models (see Psaradakis and Vávra (2016) for details).

When the null hypothesis of normality and linearity is tested using, for instance, the quaternion

of tests (i.e. one LV test and three Qrs tests), the overall probability of Type I error (i.e. the

probability that one or more tests lead to a false rejection of the null) is inflated. Some P -value

adjustment is thus desirable in order to avoid the problem of spurious inference (see Psaradakis

(2000)).11 A simple adjustment for multiple testing based on Simes (1986) is implemented

here: Let P(1) ≤ P(2) ≤ P(3) ≤ P(4) denote the ordered quaternion of (asymptotic) P -values

associated with the set of test statistics under consideration. Multiplicity-adjusted P -values are

then calculated as P̃(i) = min{4P(i)/i, 1}, i ∈ {1, 2, 3, 4} and the joint null hypothesis HNL
0 of

normality and linearity is rejected at overall level α ∈ (0, 1) if mini∈{1,2,3,4} P̃(i) ≤ α.

Note that as a byproduct of the above testing procedure, two individual hypotheses can be set

and tested as well: (i) The process {xt} in (4) has the one-dimensional Gaussian marginal

distribution F , that is HN
0 : F (x) = N(c, σ2), for all x ∈ R; (ii) The process {xt} in (4) is a linear

9Note that using the original Jarque-Bera statistic (see Jarque and Bera (1980)) is inappropriate here due to
dependence of observations.

10A stochastic process {xt} is typically characterized as linear if it admits the moving-average representation
(4) with {εt} being independent and identically distributed (i.i.d.) random variables. This is the notion of linearity
considered by McLeod and Li (1983), Lawrance and Lewis (1985, 1987), Berg, Paparoditis, and Politis (2010), and
Giannerini, Maasoumi, and Dagum (2015), among many others, and is the one adopted in this paper.

11Although there exist many adjusting methods in the literature (see Westfall and Young (1993, Chapter 2)), simple
adjusting methods (e.g. the Simes method) work no worse than computationally expensive bootstrap methods even
for mutually dependent statistics. See also Appendix A for the Monte Carlo results.
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stochastic process, that is HL
0 : {xt} ∼ linear. The HN

0 hypothesis is tested by the LV statistic

in (6) and the HL
0 is tested by the Qrs statistics in (7) with the Simes adjusted P -values.

The finite sample properties of the LV and Qrs tests for the null hypotheses of interest are

examined via the Monte Carlo experiments. The results are reported in Appendix A.

4. EMPIRICAL RESULTS
The LV test in (6) and the Qrs test in (7) are applied to a set of 48 series – 3 macroeconomic

variables for each of 16 OECD countries.12 Attention is paid to real gross domestic product (de-

noted as GDP), industrial production (denoted as IP), and the unemployment rate (denoted as

UR) – economic variables predominantly used for a trend-cycle decomposition in practice. Data

from the following 16 OECD countries are employed in the study: Australia, Austria, Belgium,

Canada, Denmark, Finland, France, Italy, Japan, the Netherlands, Portugal, Spain, Sweden,

Switzerland, the United Kingdom, United States. Most of the series span the period 1973q1 –

2014q4 (i.e. 168 observations).13

GDP and IP are transformed using both the first (log) differences and the second (log) dif-

ferences, which corresponds to widely used specifications of the stochastic trend for non-

stationary variables, whereas UR is transformed using the first differences only. The lag order

of the AR-sieve, to obtain the residuals for computing the Qrs tests, is taken to be the minimizer

of the Hannan-Quinn information criterion over the range 1 ≤ p ≤ b5 log10 nc, where b·c denotes

the greatest-integer function.14 The lag order m of the Qrs test is equal to the selected lag order

p of the AR-sieve.

The (Simes adjusted) P -values of the test statistics are reported in Table 1. The results suggest

the following:

(i) The joint null hypothesis of normality and linearity HNL
0 is rejected at 0.05 nominal level in

almost 93% of cases. No significant differences in rejecting the joint null are observed for I(1)

or I(2) specifications of the stochastic trend of output variables.

(ii) From the individual null hypotheses about normality HN
0 and linearity HL

0 , it can be con-

cluded that the presence of non-Gaussian stochastic features dominates non-linear features

in the data. In particular, the normality hypothesis is rejected at 0.05 nominal level in almost

90% of cases whereas linearity in “only” 66% of cases. Higher rejection rates of the normality

hypothesis are to be expected since non-linearity features often imply non-normality but not

vice versa.
12The dataset is downloaded from the OECD Database.
13Note that observations after 2014 are not used in order to minimize the effect of statistical revisions on the

results.
14Note that the HQ is a little bit more benevolent in determining the lag order of AR models as compared to the

BIC. Additional lags may eliminate remaining serial correlation in residuals which is desirable when using neglected
nonlinearity tests (see Lumsdaine and Ng (1999) for details).
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(iii) It can be also concluded from the individual test results that there is no country in our set

for which all selected variables can be considered as linear and/or Gaussian processes. This

result confirms widespread evidence of non-linear and non-normal features in economic series

in OECD countries.

Figure 1: Empirical Rejection Frequencies of Tests
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Although the joint null hypothesis HNL
0 of normality and linearity is clearly rejected for almost

all OECD macroeconomic variables, it may still be interesting to assess the stability of the

test results over time. For this purpose, a recursive approach is applied here. The method is

based on quarter-by quarter shortening of the full sample consisting of 168 observations (i.e.

1973q1–2014q4) to a sample of only 100 observations (i.e. 1990q1–2014q4). The LV and Q

tests are then applied to each of 69 data-windows. The empirical rejection frequencies of the

joint null hypothesis at the nominal level 0.05 for the macroeconomic variables with the I(1)

configuration of the stochastic trend are reported in the graphical form in Figure 1.15

It can be concluded from the results that the empirical rejection frequencies are reasonably sta-

ble over time for all three macroeconomic variables – some power loss is to be expected as a

result of shortening the sample from 168 to only 100 observations (see Table 3 for Monte Carlo

evidence). Stronger and more stable evidence of non-normality and non-linearity is found for

real GDP and IP than for UR. Stability of the empirical rejection frequencies clearly indicates

that non-linearity and non-normality seem to be a characteristic features of this type of macroe-

conomic variables.

15The rejection frequency is calculated as 1
16

∑16
i=1 I(α̃i ≤ 0.05), where α̃i is the overall Simes adjusted P -value

obtained for the i-th country in a given time-window, and I(·) is an indicator function. So, the rejection frequency
equals to 1.0 means that the procedure rejects the joint null hypothesis of normality and linearity in all countries in
a given data-window.
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Table 1: (Simes Adjusted) P -values of LV and Q Tests
HNL

0 : Normality
and Linearity HN

0 : Normality HL
0 : Linearity

I(1) I(2) I(1) I(2) I(1) I(2)
GDP IP UR GDP IP GDP IP UR GDP IP GDP IP UR GDP IP

Australia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.56 0.80 0.69 0.00
Austria 0.00 0.01 0.78 0.00 0.12 0.00 0.01 0.42 0.00 0.38 0.00 0.01 0.59 0.00 0.08
Belgium 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.04 0.44 0.70
Canada 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.90 0.11 0.43 0.00 0.25 0.86
Denmark 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.02 0.30 0.00 0.00 0.24
Finland 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.06 0.00 0.00
France 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.43 0.00 0.10 0.86 0.00
Italy 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.15 0.00 0.00
Japan 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Netherlands 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.51
Portugal 0.00 0.05 0.00 0.00 0.23 0.46 0.01 0.00 0.00 0.06 0.00 0.67 0.41 0.00 0.75
Spain 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sweden 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Switzerland 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.19 0.11 0.05
United Kingdom 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.04 0.00 0.02
United States 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00
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5. CONCLUSION

This article has focused on testing the validity of underlying assumptions (i.e. normality and lin-

earity) of UC-ARIMA models using OECD macroeconomic variables. Clear and overwhelming

evidence of non-normality and non-linearity is found in the vast majority of OECD indicators.

Our results thus cast doubts on the adequacy of routinely used Gaussian linear UC-ARIMA

models for a trend-cycle decomposition. We are of the opinion that our results call for im-

plementing simple, yet flexible, non-linear non-Gaussian models accompanied by appropriate

economic restrictions.
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A. SIMULATION STUDY
In this section, we present and discuss the results of a simulation study examining the small-

sample properties of the LV and Qrs tests under various data-generating mechanisms. The

following linear and non-linear data-generating processes (DGPs) are used in the simulations:

M1: Xt = 0.5Xt−1 + εt,

M2: Xt = 0.7Xt−1 − 0.3εt−1 + εt,

M3: Xt = 0.5Xt−1 − 0.3Xt−1εt−1 + εt,

M4: Xt = −0.5Xt−1I(Xt−1 6 1) + 0.4Xt−1I(Xt−1 > 1) + εt,

M5: Xt = 0.5Xt−1 + σtεt, lnσ2t = 0.01 + 0.3{|εt−1| − E(|εt−1|)} − 0.8εt−1 + 0.9 lnσ2t−1,

{εt} are i.i.d. zero-mean random variables with unit variance. The distribution of εt is either

Gaussian (labeled N in what follows) or a member of generalized lambda distributions having

inverse distribution function F−1ε (u) = β1 + β−12 {uβ3 − (1 − u)β4}; the parameter values used

in the experiments are taken again from Bai and Ng (2005) and can be found in Table 2. The

distributions S1 – S2 are symmetric (yet leptokurtic), whereas A1 – A2 are asymmetric.

For each design point, 1000 independent realizations of {Xt} of length 100 + n, with n ∈
{100, 200}, are generated. The first 100 data points of each realization are then discarded

in order to eliminate start-up effects and the remaining n data points are used to compute

the value of the test statistics of interest. The lag order is taken to be the minimizer of the

Hannan-Quinn information criterion over the range 1 ≤ p ≤ b5 log10 nc, where b·c denotes the

greatest-integer function. The lag order m of the Qrs test is equal to the selected lag order p of

the AR-sieve.

The Monte Carlo rejection frequencies of the above defined set of hypotheses (i.e. HNL
0 , HN

0 ,

and HL
0 , see Section 3 for details) using the LV and Q tests at nominal level 0.05 are reported

in Table 3. The results clearly suggest that the test statistics have good size and power proper-

ties for all hypotheses of interest even in the smallest sample considered.

Table 2: Noise Distributions
λ1 λ2 λ3 λ4 skewness kurtosis

N – – – – 0.0 3.0
S1 0.000000 -1.000000 -0.080000 -0.080000 0.0 6.0
S2 0.000000 -0.397912 -0.160000 -0.160000 0.0 11.6
A1 0.000000 -1.000000 -0.007500 -0.030000 1.5 7.5
A2 0.000000 -1.000000 -0.100900 -0.180200 2.0 21.1
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Table 3: Empirical Rejection Frequencies of Normality and Linearity Tests
HNL

0 : Normality
and Linearity HN

0 : Normality HL
0 : Linearity

sample distr. M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5
n = 100 N 0.04 0.04 0.79 0.74 0.98 0.03 0.03 0.38 0.04 0.95 0.04 0.04 0.78 0.76 0.83

S1 0.31 0.31 0.93 0.84 0.98 0.37 0.40 0.69 0.47 0.97 0.02 0.03 0.91 0.75 0.68
S2 0.53 0.54 0.96 0.90 0.99 0.60 0.59 0.79 0.67 0.98 0.03 0.03 0.94 0.76 0.62
A1 0.69 0.69 0.90 0.93 0.95 0.80 0.79 0.66 0.88 0.92 0.04 0.03 0.86 0.47 0.45
A2 0.67 0.66 0.94 0.94 0.96 0.74 0.75 0.76 0.81 0.96 0.03 0.03 0.91 0.59 0.43

n = 200 N 0.05 0.04 0.99 0.98 1.00 0.04 0.04 0.66 0.04 1.00 0.05 0.03 0.99 0.99 0.97
S1 0.55 0.54 1.00 0.99 1.00 0.62 0.62 0.91 0.70 1.00 0.04 0.04 1.00 0.98 0.90
S2 0.76 0.78 1.00 1.00 1.00 0.82 0.83 0.97 0.90 1.00 0.04 0.04 1.00 0.97 0.83
A1 0.94 0.94 1.00 1.00 1.00 0.97 0.97 0.88 1.00 1.00 0.03 0.04 0.99 0.88 0.72
A2 0.91 0.92 1.00 1.00 1.00 0.95 0.95 0.94 0.98 1.00 0.04 0.04 1.00 0.90 0.65
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