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Abstract

This paper examines the small sample properties of a linear programming es-

timator in time series quantile regression models. Under certain regularity condi-

tions, the estimator produces consistent and asymptotically normally distributed

estimates of model parameters. However, despite these desirable asymptotic prop-

erties, we find that the estimator performs rather poorly in small samples. We sug-

gest the use of a subsampling method to correct for a bias and discuss a simple

rule of thumb for setting a block size. Our simulation results show that the sub-

sampling method can effectively reduce the bias at very low computational costs

and without significantly increasing the root mean squared error of the estimated

parameters. The importance of bias correction for economic policy is highlighted

in a growth-at-risk application.
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1. INTRODUCTION

Although the vast majority of regression applications in economics are concerned with

modelling a conditional mean of economic variables, there is a rapidly growing interest

in modelling other aspects of a conditional distribution of these variables. A quantile

regression, which allows for a flexible analysis of the conditional quantile distribution

of the variables under consideration, has become a workhorse method in applied eco-

nomics. The examples include: autoregressive modelling (Koenker and Xiao (2006);

Tsong and Lee (2011); Mumtaz and Surico (2015); Montes-Rojas (2019)), unit root test-

ing (Koenker and Xiao (2004)), testing for causality (Troster (2018); Song and Taamouti

(2021)), or forecasting (Manzan (2015); Korobilis (2017)), macroeconomic tail risk mod-

elling (Adrian, Boyarchenko, and Giannone (2019); Adams, Adrian, Boyarchenko, and

Giannone (2021); Chavleishvili and Manganelli (2019)), just to name a few.

It is well known that under certain regularity conditions, quantile regression estima-

tors with time series data produce consistent and asymptotically normally distributed

estimates of model parameters (see Koenker and Xiao (2006); Gregory, Lahiri, and

Nordman (2018); Galvao, Montes-Rojas, and Park (2009)). However, many consistent

estimators used in time series analysis produce severely biased estimates in small sam-

ples1, something which has a negative impact on making statistical inference and fore-

casting from these models. Despite rapidly growing applications of quantile regres-

sion models in economics, very little is known about the behavior of quantile regres-

sion estimators with time series data in small samples usually encountered in applied

macroeconomics.

The aim of this paper is twofold. First, we examine the small sample performance of

a popular linear programming estimator in quantile autoregressive models by means

of Monte Carlo simulations. Second, in contrast to similar studies that are limited to

documenting a small sample bias in various time series models, we suggest the use

of a subsampling method to correct for a bias and discuss a simple rule of thumb for

1See MacKinnon and Smith (1998) for linear autoregressive models, Psaradakis and Sola (1998) for
Markov switching autoregressive models, Kapetanios (2000) for threshold autoregressive models, and
Deb (1996) for conditional volatility models.
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setting a block size.

The paper is organized as follows. Section 2 describes a quantile autoregressive re-

gression model and discusses the asymptotic properties of the estimated parameters.

Section 3 examines the small sample properties of the linear programming estimator

in quantile autoregressions by means of Monte Carlo experiments. Section 4 discusses

a subsampling method for a bias correction of the estimated quantile regression pa-

rameters. Section 5 discusses a growth-at-risk application to output growth. Section 6

summarizes and concludes.

2. QUANTILE AUTOREGRESSIVE MODEL

Given a real-valued time series Y1, . . . , Yn, a p-th order quantile autoregressive model

(QAR) can be written as follows

Yt = φ0(Ut) + φ1(Ut)Yt−1 + · · ·+ φp(Ut)Yt−p, (1)

where {Ut} are i.i.d. standard uniform random variables. The first term φ0(Ut) can also

be written as φ0(Ut) = φ0 + F−1(Ut) = φ0 + ǫt, where F is a continuous distribution

function of model errors. It is worth remarking that the QAR model in (1) can be

interpreted as a specific type of functional-coefficient autoregressive (FCAR) model

and nests an autoregressive conditional heteroskedasticity (ARCH) model in terms of

the second-order properties (see Xiao (2012) for details). A sufficient condition for the

QAR model in (1) to admit a stationary solution is that roots of the polynomial equation

c(z) = 1− c1z−· · ·− cpz
p, where ci = maxU(|φi(U)|), for i = 1, . . . , p, lie outside the unit

disk.2 The conditional quantile function of the model in (1) is given by

Q(τ |Ft−1) = φ0(τ) + φ1(τ)Yt−1 + · · ·+ φp(τ)Yt−p, (2)

where τ ∈ (0, 1) is the quantile parameter and Ft−1 denotes the sigma-field that con-

tains information up to and including time t − 1. The quantile function is sometimes

denoted as Qt−1(τ) in the literature (we will use both terms interchangeably). The con-

2A weaker, yet less operational, stationarity condition is discussed in Koenker and Xiao (2006, p. 981).
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ditional quantile function Q(τ |·) is supposed to be a monotonically increasing function

in the quantile parameter τ in order to ensure a non-crossing property of the condi-

tional quantiles and thus consistency of the estimated parameters (see Chernozhukov,

Fernández-Val, and Galichon (2010) for further details).

For any quantile parameter τ ∈ (0, 1), the estimated quantile regression parameters are

a solution to the following minimizing problem:

φ̂(τ) = argmin
φ∈Rp+1

n
∑

t=1

ρτ (Yt −X ′

tφ), (3)

where ρτ (z) = z [τ − I(z < 0)] denotes the check function with I(·) being a standard

indicator function, φ = (φ0, φ1, . . . , φp)
′ is a (p+ 1)× 1 vector of model parameters and

X t = (1, Yt−1, . . . , Yt−p)
′ is a (p+ 1)× 1 vector of lags of the dependent variable. It has

been recognized for a long time that the optimization problem in (3) can be formulated

as a linear programming problem and solved efficiently using either a simplex method

or an interior point method. We opt for the latter method, which is more convenient,

especially for large-scale problems and thus widely used in practice. The interested

reader is referred to Chen and Wei (2005, pp. 401–404) for a detailed description of lin-

ear programming estimators in quantile regressions. It can be shown that under certain

regularity conditions, quantile regression estimators produce consistent and asymptot-

ically normally distributed estimates of model parameters (see Theorem 1 and condi-

tions C1−C5 in Gregory, Lahiri, and Nordman (2018, pp. 1144-1145)). However, de-

spite these desirable asymptotic properties, very little is known about the behavior of

these estimators in small samples usually encountered in applied macroeconomics.

3. SIMULATION STUDY

In this section we present and discuss the results of a simulation study examining the

small sample properties of the linear programming (LP) estimator in quantile autore-

gressive models under various data-generating mechanisms.
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3.1. EXPERIMENTAL DESIGN

We assess the performance of the LP estimator under different patterns of dependence

by considering artificial data generated according to the first-order quantile autore-

gressive model

Yt = φ0(Ut) + φ1(Ut)Yt−1,

with the following parameter configurations:

M1: φ0(Ut) = 1.0 + Φ−1(Ut) = 1.0 + ǫt, φ1(Ut) = 0.5− Ut

4
,

M2: φ0(Ut) = 1.0 + Φ−1(Ut) = 1.0 + ǫt, φ1(Ut) = 0.25 +
Ut

4
,

M3: φ0(Ut) = 1.0 + Φ−1(Ut) = 1.0 + ǫt, φ1(Ut) = 0.8− Ut

2
,

M4: φ0(Ut) = 1.0 + Φ−1(Ut) = 1.0 + ǫt, φ1(Ut) = 0.3 +
Ut

2
,

where {Ut} are i.i.d. standard uniform random variables and Φ(·) is a standard nor-

mal cumulative distribution function. All DGPs satisfy quantile monotonicity and sta-

tionarity conditions, but differ in generated persistence and heterogeneity: M1 (M2)

exhibits relatively low, linearly decreasing (increasing), persistence across quantiles

(0.25 ≤ φ1(·) ≤ 0.50), whereas M3 (M4) exhibits strong, linearly decreasing (increas-

ing), persistence with a higher degree of heterogeneity across quantiles (0.30 ≤ φ1(·) ≤
0.80).3

For each design point, N = 100, 000 independent realizations of {Yt} of length 100 + n,

with n ∈ {100, 200, 500}, are generated. The first 100 data points of each realization

are then discarded in order to eliminate start-up effects and the remaining n data

points are used to compute the quantile regression estimates and related quantities.

The properties of the LP estimator are evaluated in 9 equally spaced quantile points

τ ∈ {0.1, . . . , 0.9}.4

3Note that models M1 and M3 are calibrated according to a QAR(1) model estimated using the (an-
nualized) quarterly real GDP growth rates for United States (M1) and Euro Area (M3) in the period
spanning from 1985 Q1 to 2019 Q4 (see Adrian, Boyarchenko, and Giannone (2019, pp. 1272–1275) for a
recent application). Models M2 and M4 are just modifications of models M1 and M3.

4Extreme quantiles (i.e. τ → 0 and τ → 1) are not considered here since they require special treatment
(see Chernozhukov, Fernández-Val, and Kaji (2017) for details).
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3.2. SIMULATION RESULTS

The simulation results in graphical form are reported in Figures 1−4, where bias func-

tions of the estimated parameters are depicted over a pre-specified range of the quan-

tile parameter τ .5 The simulation results reveal that the LP method produces severely

biased estimates of the QAR model parameters regardless of the data persistence. In

particular, the intercept φ0(τ) is systematically upward biased for all values of the

quantile parameter τ considered, whereas the persistence parameter φ1(τ) is down-

ward biased. The maximum bias amounts to up 11% of the QAR model parameters,

depending on the sample size n and the quantile parameter. Interestingly, the shape

of the bias functions of φ0(τ) depends on the correlation between φ0(τ) and φ1(τ) pa-

rameters: in the case of positive correlation (models M2 and M4), the bias function of

φ0(τ) is “flat” across the quantile parameter τ , whereas in the case of negative correla-

tion (models M1 and M3), the bias function of φ0(τ) is decreasing across the quantile

parameter τ . The shape of the bias function of φ1(τ) is proportional to the level of per-

sistence: the higher the persistence the higher the bias (in absolute terms). Although

the behavior of the estimated QAR model parameters improves quickly with the sam-

ple size n, 500 observations are actually needed to obtain (almost) unbiased parameters

(see the results for model M3 depicted in Figure 3 where some remaining bias is still

observed even for the sample of 500 observations).

5For a true model parameter φ ∈ φ, the bias function is calculated as Bias(φ) = N−1
∑

N

i=1
φ̂i − φ,

where φ̂i denotes the estimated parameter in the i-th Monte Carlo repetition.
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Figure 1: Small Sample Properties of Parameters in Model M1
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Figure 2: Small Sample Properties of Parameters in Model M2
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Figure 3: Small Sample Properties of Parameters in Model M3
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Figure 4: Small Sample Properties of Parameters in Model M4
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4. BIAS CORRECTION

We suggest using a subsampling method for adjusting a bias of the estimated quantile

autoregressive model parameters.6 Subsampling is a simple, yet powerful, resampling

method that allows asymptotically valid inference under very general conditions (see

Politis, Romano, and Wolf (1999)). The basic idea is to split the original series into

overlapping subsamples and re-estimate the model in each of these subsamples. The

approximate bias-adjusted parameters are then calculated as a linear combination of

the full sample and subsample estimates, that is

φ̃ =

(

n

n− ℓ

)

φ̂−
(

ℓ

n− ℓ

)

1

n− ℓ+ 1

n−ℓ+1
∑

i=1

φ̂i, (4)

where φ̃ denotes the bias-adjusted parameter vector, φ̂ is a vector of parameters esti-

mated from the full-sample consisting of n observations, φ̂i is a vector of parameters

estimated from the i-th subsample consisting of just ℓ observations (1 < ℓ < n). The

interested reader is referred to Chambers (2013) for other bias-adjusting schemes.

An important issue that arises in the use of subsampling techniques in practice is the

selection of a reasonable subsample size ℓ for a given sample size n, a problem akin

to that of selecting the block length for blockwise bootstrap methods (see Lahiri (2003,

Chap. 7)). Unfortunately, the asymptotic requirements that ℓ → ∞ and ℓ/n → 0 (as

n → ∞) give little guidance for the selection of an appropriate subsample size beyond

the requirement that it grows at a slower rate than the sample size n. Several methods

for selecting the subsampling size ℓ have been proposed in the literature (see Politis,

Romano, and Wolf (1999, Chap. 9)). These methods (e.g. “minimum volatility” and

“calibration”) are designed namely for calculating confidence intervals and hypothesis

testing about the estimated parameters and thus are not directly applicable to the prob-

6Although analytical bias expressions are easy to implement, while resampling methods are often
computer intensive and involve some technical difficulties, most studies conducting bias-adjustment
resort to resampling techniques. There are at least two good reasons in favor of resampling techniques.
First, analytical bias expressions are usually based on first-order approximation techniques and thus
provide only a local approximation to the true bias function (see, e.g., MacKinnon and Smith (1998,
p. 210)). Second, analytical bias expressions are usually available only for simple (linear) time series
models (see, e.g., Shaman and Stine (1988, p. 846)).
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lem at hand - a bias correction. To overcome this difficulty, we follow Chernozhukov

and Fernández-Val (2005) and employ a simple rule of thumb for selecting the subsam-

ple size ℓ. The rule takes the following form

ℓ = ⌈m+ nγ⌉, (5)

where γ ∈ (0, 1), m > 0 and n denotes the sample size. Some comments on the rule

are in order. The first term m represents a minimum number of observations required

for quantile regression estimates. We link m with the tail quantiles whose estimation

is data-demanding: m = 1/min(T ), where T = {τ1, 1 − τ1, . . . , τk, 1 − τk} is a set of

all quantile parameters and their complements considered in the problem at hand (for

some integer 1 ≤ k < n). In order to satisfy the condition that the block ℓ grows with

the sample size n but at a slower rate, Chernozhukov and Fernández-Val (2005, p. 264)

recommended using γ = 1/2 based on some analytical results from Sakov and Bickel

(2000).7 The symbol ⌈·⌉ denotes the greatest integer function.

In order to keep computational costs of Monte Carlo simulations at a reasonable level,

only the shortest sample size (n = 100) is considered when examining the performance

of the subsampling-based bias adjusting procedure. Keeping in mind the sample size

and the range of quantile points, the block size ℓ determined by the rule in (5) is ℓ =

⌈1/0.1 +
√
100⌉ = 20 observations.

The simulation results in graphical form are reported in Figures 5−8, where the bias

functions are depicted for both estimated (labelled “Est”) and bias adjusted (labelled

“Adj”) model parameters. It can be concluded from the simulation results that the

subsampling method employed is capable of eliminating most of the bias from quan-

tile regression parameters. As expected, the subsampling procedure is slightly less

successful for highly-persistent stochastic processes (see model M3). Although a bias

reduction is an important and attractive feature of the subsampling method, there are

also other distributional properties of estimators worth considering (e.g. the root mean

square error).8 Our simulation results indicate that the subsampling method can effec-

7The authors confirmed that other values of γ may also lead to reliable, powerful, and computation-
ally attractive inference.

8For a true model parameter φ ∈ φ, the root mean square error function is calculated as RMSE(φ) =
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tively reduce the bias without substantially increasing the root mean squared error of

the estimated parameters.

As a robustness check, we investigate the sensitivity of the subsampling results on

changes of the parameter γ in the block size rule (5). Apart from our benchmark con-

figuration of the rule with γ = 1/2, we also consider the rule with γ = 1/4 as in Cher-

nozhukov and Fernández-Val (2005). This leads to the block size ℓ = ⌈1/0.1 + 4
√
100⌉ =

14 observations. The simulation results for model M4 are reported in Figure 9. Ex-

tremely low sensitivity of the bias and root mean squared functions on changes in the

the γ parameter are observed. This fact can be partly explained by the constant term

m in the block-size rule which guarantees a minimum number of observations for es-

timation regardless of γ.

√

N−1
∑

N

i=1
(φ̂i − φ)2, where φ̂i denotes the estimated parameter in the i-th Monte Carlo repetition.
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Figure 5: Properties of Bias Adjusted Parameters in Model M1
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Figure 6: Properties of Bias Adjusted Parameters in Model M2
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Figure 7: Properties of Bias Adjusted Parameters in Model M3
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Figure 8: Properties of Bias Adjusted Parameters in Model M4
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Figure 9: Sensitivity Analysis for Model M4
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5. EMPIRICAL EXAMPLE

Since the global economic recession in 2008, the focus of policymakers on modelling

and forecasting macroeconomic tail risks has increased substantially. In order to ac-

count for possible non-linear behaviour of economic variables within a relatively sim-

ple modelling framework, a quantile regression has become a workhorse method for

calculating the predictive distribution of economic variables (see, e.g., Adrian, Bo-

yarchenko, and Giannone (2019); Chavleishvili and Manganelli (2019); Figueres and

Jarociński (2020); Adrian, Boyarchenko, and Giannone (2021); Adams, Adrian, Bo-

yarchenko, and Giannone (2021); Kiley (2022); Ferrara, Mogliani, and Sahuc (2022)

to name just a few recent applications). The evolution of the predictive distribution

can be used to formulate the concept of growth-at-risk (GaR) which is defined as the

α-percentile of the predictive distribution of economic variables (e.g. output growth).9

The density forecasting approach (including the GaR) offers a number of attractive fea-

tures: (i) central bankers can benefit from information about the entire distribution of

future output growth, encompassing both downside and upside macroeconomic risks,

and going beyond more traditional point forecasts; (ii) it also helps central bankers to

more readily communicate sources of macroeconomic risks to professionals and the

public.

However, as shown in the previous section, quantile regression estimators produce

biased estimates of model parameters in small samples, something which has a neg-

ative implications for making statistical inference and forecasting from these models.

The objective of this empirical analysis is to assess the magnitude of the impact on the

macroeconomic tail risk measure and the predictive distribution.

5.1. DATA

As for the output series, the Euro Area 19 real gross domestic product (with fixed com-

position) is employed in our analysis. The data are seasonally adjusted, transformed

9The conventional values for α are 0.05 or 0.10.
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into stationarity using the (annualized) quarter-on-quarter growth rates, and spanning

the period from 1999 Q1 to 2019 Q4 (n = 84 observations).10 The data can be down-

loaded from the ECB Statistical Data Warehouse. The Euro Area real GDP growth

series altogether with long-run economic growth measured by a sample median (ap-

prox. 1.8%) are depicted in Figure 10.

Figure 10: Euro Area Real GDP Growth
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5.2. EMPIRICAL RESULTS

In our empirical example, a stationary time series of the Euro Area real GDP growth

rates {Yt}nt=1 is supposed to follow a p-th order quantile autoregressive model given by

Yt = φ0(Ut) + φ1(Ut)Yt−1 + · · ·+ φp(Ut)Yt−p, (6)

where {Ut} are i.i.d. standard uniform random variables. The first term φ0(Ut) can

also be written as φ0(Ut) = φ0 + F−1(Ut) = φ0 + ǫt, where F is a continuous distribu-

tion function of model errors (not necessarily Gaussian). The lag order p is selected

using a modified Bayesian information criterion within the range of possible values

p ∈ [1, 4] (see Galvao, Montes-Rojas, and Park (2013, p. 311)). Although the optimal

lag may vary across the quantile parameter τ , we follow the mainstream literature

10Since the last observations from the Covid-19 period might be classified as abrupt outliers, they are
purposely excluded from the sample.
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and select the lag order at the median level τ = 0.5, resulting in p = 1. The esti-

mated parameters of the QAR(1) model are reported in Table 1 (columns labelled “Es-

timated”). Seven representative quantile parameters are considered in our analysis:

τ ∈ {0.10, 0.25, 0.40, 0.50, 0.60, 0.75, 0.90}. For comparison, the bias-adjusted parame-

ters, based on the subsampling method described earlier, are reported in Table 1 as

well (columns labelled “Adjusted”). The block size ℓ = 20 is determined according to

the rule in (5). It can be concluded from the table that the intercept φ0 is upward biased

(for most of the quantile parameters), whereas the persistence parameter φ1 is slightly

downward biased. These empirical results are broadly in line with our Monte Carlo

findings.11

Table 1: Estimated and Adjusted Quantile Regression Parameters

Estimated Adjusted
τ φ0(τ) φ1(τ) φ0(τ) φ1(τ)

0.10 -2.35 1.02 -2.63 1.15
0.25 -0.21 0.62 -0.13 0.63
0.40 0.21 0.62 0.12 0.66
0.50 0.67 0.62 0.57 0.68
0.60 1.11 0.53 1.07 0.56
0.75 2.04 0.34 2.16 0.31
0.90 3.04 0.25 3.23 0.19

For better understanding of the impact of biased quantile regression parameters on

macroeconomic tail risks, the α-level GaR values are reported in the graphical form

as well. Formally, the one-step ahead α-level GaR is defined as the α-percentile of the

predictive distribution of real GDP growth, that is

P(Yn+1 ≤ Qn(α)) = α ∈ (0, 1), (7)

where Yn+1 denotes output growth in period n+1, Qn(α) the conditional α-level quan-

tile function conditional on Fn. The GaR is a forecast-oriented risk measure and can

be understood as the “worst-case” estimate of future output growth - output growth

at time n+ 1 lower than Qn(α) can occur only with probability 100α percent.

11Differences in the bias functions of the constant term φ0(·) in the empirical example and Monte Carlo
simulations can be explained by differences in F used in (6) and Φ used in Monte Carlo simulations.
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The 10%-GaR (i.e. α = 0.1) is calculated directly from (6) as Qn(0.1) = φ0(0.1) +

φ1(0.1)Yn using both the estimated and bias-adjusted parameters. It is obvious that

the (starting) value Yn plays an important role in calculating the predictive quantiles as

well. For this reason, we calculated the 10%-GaR values conditional on a set of possible

starting real GDP values Yn ∈ [−10, 5]. The resulting 10%-GaR values are depicted in

Figure 11(a). The vertical and horizontal axes correspond, respectively, to starting real

GDP growth values and the reference GaR values.

It can be concluded from the figure that the bias of the quantile regression parameters

translates into the tail risk measure Qn(0.1) in a non-trivial way, making the unad-

justed tail risk measure inaccurate and even misleading. In particular, the GaR values

can be significantly underestimated in times of economic downturns (up to 2 percent-

age points), whilst slightly overestimated in times of high growth (see Figure 11(a)).

Interestingly, the estimated (unadjusted) model parameters produce unbiased tail risk

measures only around long-run (median) real GDP growth (see the vertical black dot-

ted line at the level of 1.8 in Figure 11(a)).

Since there is no easy way to obtain a smooth probability density function from the

estimated quantile function, the quantile-based measures of higher-order moments (i.e.

dispersion, skewness, and kurtosis), are considered for assessing the impact of the

biased parameters on the whole predictive distribution of real GDP growth (see Kim

and White (2004)). Formally, these quantities are defined as follows:

• Dispersion: ζ2 = Qn(0.75)−Qn(0.25),

• Skewness: ζ3 =
Qn(0.75) +Qn(0.25)− 2Qn(0.5)

Qn(0.75)−Qn(0.25)
,

• Excess kurtosis: ζ4 =
Qn(0.9)−Qn(0.6) +Qn(0.4)−Qn(0.1)

Qn(0.75)−Qn(0.25)
− 1.52,

where each quantile Qn(α) satisfies (7) for any α ∈ (0, 1). The value 1.52 serves as

a norming constant for kurtosis. As in the previous case, the quantile-based higher-

order moments are calculated conditional on a set of possible starting real GDP values

Yn ∈ [−10, 5]. Both estimated and adjusted one-step ahead quantile-based moment
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measures are depicted in Figure 11(b-d). The vertical and horizontal axes correspond,

respectively, to starting real GDP growth values and the selected higher-order mo-

ments of the predictive distribution.

It can be concluded from the figure that the bias of the quantile regression parameters

translates into the higher-order moments and the whole predictive distribution in a

non-linear way (see the impact on skewness ζ3 and excess kurtosis ζ4 in Figure 11(c-

d)). In particular, especially the left-tail of the predictive distribution, which is of the

crucial importance for policymakers, can be significantly underestimated in times of

economic downturns.

Figure 11: Euro Area Tail Risk and Distributional Measures
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6. CONCLUSION

This paper has investigated the small sample properties of the quantile regression esti-

mator with time series data. Our simulation results show that the estimator performs

rather poorly in small samples. More than 500 observations are needed to obtain unbi-

ased quantile regression parameters and thus reliable inference and accurate forecasts.

It is also shown that subsampling can effectively reduce the bias at very low compu-

tational costs and without significantly increasing the root mean squared error of the

estimated quantile regression parameters. The importance of bias correction for eco-

nomic policy is highlighted in a growth-at-risk application.

Although the findings of this paper are specific to first-order quantile autoregressive

models, we expect to encounter similar difficulties to arise in higher-order and/or mul-

tivariate quantile autoregressive models. In fact, the problems are likely to become

more severe as the dimension of such models increases.
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CHERNOZHUKOV, V., I. FERNÁNDEZ-VAL, AND A. GALICHON (2010): “Quantile and

probability curves without crossing,” Econometrica, 78(3), 1093–1125.

CHERNOZHUKOV, V., I. FERNÁNDEZ-VAL, AND T. KAJI (2017): “Extremal quantile

regression,” in Handbook of Quantile Regression. Chapman and Hall/CRC.

DEB, P. (1996): “Finite sample properties of maximum likelihood and quasi-maximum

likelihood estimators of EGARCH models,” Econometric Reviews, 15, 51–68.

FERRARA, L., M. MOGLIANI, AND J.-G. SAHUC (2022): “High-frequency monitoring

of growth at risk,” International Journal of Forecasting, 38, 582–595.
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