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Abstract

Applications in modern macroeconomics increasingly require non-linear solu-

tion methods. Our paper studies the consequences of the widely used Calvo pricing

mechanism in a non-linear world. We introduce the concept of the stability region

as a non-linear counterpart to the determinacy region. We show that in non-linear

models the Taylor principle is no longer sufficient for inflation stability and stable

macroeconomic model moments. The presence of a self-reinforcing price-inflation

spiral captured by the non-linear solution presents a new challenge for monetary

policy in anchoring inflation expectations.
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NON-TECHNICAL SUMMARY

Inflation in most advanced economies has been rising at a fast pace since the start of

2021. In mid-2022 inflation rates in the United States stood at above 8% with a peak

of 9.1% in June 2022. In the Euro Area inflation rates were at 10% by the end of

2022. In some Central and Eastern European countries inflation was even higher, e.g.,

in Slovakia, annual Consumer Price Index (CPI) inflation was 15% in November 2022.

The increase in inflation is accompanied by the rise in both short term and long term

inflation expectations1. The de-anchoring of inflation expectations from the central

bank target adds to the growing evidence on an increasing persistence of inflation (see

Reis (2021)) and thus higher trend inflation. In other words, with some simplicity,

inflation is heading where people expect inflation to go. Both empirical and theoretical

economics predicts, however, that the costs of permanent inflation are small (Cooley

and Hansen (1989), McCandless and Weber (1995), Bae and Ratti (2000), Serletis

and Koustas (1998)). The argument is that nominal income can adjust for anticipated

inflation, leaving people almost as well off as they would have been in the absence

of inflation. The idea of medium to long-run money neutrality is a wildly accepted

theoretical concept. For instance, McCandless and Weber (1995) find that inflation

rates are not correlated with real output growth in most developed countries. On the

other hand, a large body of research documents that people hate inflation. Di Tella,

MacCulloch, and Oswald (2001) show in a cross-country survey that people’s happiness

and life satisfaction is negatively correlated to inflation. Shiller (1996), in a detailed

survey of public attitude toward inflation, finds that people strongly dislike inflation.

The Gallup survey of public opinion repeatedly documents that, in times of fast growing

prices, Americans report inflation as the nation’s number one problem, dominating even

concerns about unemployment. Why, exactly, is higher inflation so bad?

We propose an explanation by showing that the misalignment in relative prices might

imply large economic costs of inflation by triggering a self-reinforcing price-dispersion

spiral which de-anchors inflation expectations from the central bank’s target. The stan-

dard prescription for monetary policy to anchor inflation expectations is to follow the

Taylor principle, according to which the nominal interest rate should rise more than

proportionally with inflation. We show that in times of high inflation when the distribu-

tion of prices across products widens and inflation uncertainty rises, the Taylor principle

is no longer sufficient for inflation stability2. The anchoring of inflation expectations in-

1This can be seen for instance in Survey of Professional Forecasters for 10 year infla-
tion expectations, https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/survey-
of-professional-forecasters. 10Y inflation expectations derived from Swaps.

2There is a mounting empirical evidence showing that trend inflation, dispersion of prices and inflation
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stead calls for an even more aggressive stance on inflation targeting and abstaining from

virtually any aim to stabilize the real side of the economy.

In a standard New Keynesian DSGE model with Calvo pricing solved non-linearly we

show how the distortion in relative prices might lead to high economic costs of infla-

tion and what, consequently, the implications are for monetary policy. The non-linear

solution is an important aspect of our story because it preserves i) the distribution of

relative prices in the economy and its influence on the macroeconomy, and ii) inflation

uncertainty affecting the consumption saving decision.

A large amount of research has confirmed that prices adjust to a new economic envi-

ronment in a sluggish way (see Klenow and Kryvtsov (2008), Eichenbaum, Jaimovich,

Rebelo, and Smith (2014), Dhyne, Alvarez, Le Bihan, Veronese, Dias, Hoffmann, Jonker,

Lunnemann, Rumler, and Vilmunen (2006) and Klenow and Malin (2010) for a survey

). It is less clear, however, why prices are rigid. A common way in the literature to

model price rigidities is to use the assumption of Calvo pricing. In this framework, a

firm is allowed to change its price in a given period only with some probability, and has

to keep its price at the previous level otherwise. We may therefore view the Calvo pric-

ing mechanism rather as a useful technical device (which is easy to calibrate), designed

to capture the impact of monetary policy on the real economy, rather than capturing or

describing the reasons why firms adjust prices in a sluggish way. More concretely, Calvo

pricing assumes that every morning when firms open, a lottery is played, determining

firms which will be allowed to change their prices. The unlucky firms stay with their

old price. Firms which are allowed to change their price do not know, however, for

how long this price will remain fixed. Therefore, when setting the price the firm has

to take into account its expectation about future prices and future costs of production.

This assumption creates a dispersion of prices across product varieties in the non-linear

model economy and leads to misalignment in relative prices. The recent spike in infla-

tion provides anecdotal evidence demonstrating how price rigidity creates dispersion of

prices in the real world. As an example, consider a particular Czech traditional bricks

producer that has recently adjusted its price list to a new set of higher prices; however,

there is a number of other producers on the market which sell virtually the identical

product still at the old lower prices.

To understand the economic effects of misalignment in relative prices in isolation, let

us assume a model where all firms in the economy are the same in every aspect but in

uncertainty are rising since 2021. Albagli (2022) shows firms expectations about future inflation are
largely dispersed. This disagreement in inflation forecast is consequently reflected in their price settings.
Dispersion in households inflation expectations is growing in US (i.e. Weber et.al. (2022)), EU and
Slovakia. Drenik and Perez (2014) show that inflation uncertainty increases price dispersion. Rising
inflation risk premia in government bonds points to rising inflation uncertainty.
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the price they charge. The assumption of homogeneous firms means that an efficient

allocation of scare resources requires that all firms produce the same amount of goods.

Nevertheless, because each firm charges a different price each firm faces a different de-

mand for its product. Firms re-pricing their product variety to a new higher price will

face, under the (in price) downward sloping demand curve, a lower demand for their

product variety and thus produce a smaller level of output. In contrast, firms with low

prices will face high demand and produce larger amounts of their product variety. To-

tal output is highest when production inputs are allocated efficiently across producers.

In case of homogeneous producers this can be only be the case if each firm produces

the same amount of each variety. The distortion in relative prices will therefore lead

to misallocation of resources. Let us look at some narrative example demonstrating

how misalignments in relative prices lead to economic costs. Let’s assume that the car

producer, BMW, cannot change its price and is stuck with low price. As a consequence

the economy will produce too many BMWs. On the other hand, for instance, Audi has

already repriced its cars and, therefore, sells its product at a higher price. As a result,

the misalignment in relative prices of these two car producers leads to the production of

too many BMWs and too little Audi. This has following consequences. First, consumers

would be happier if their consumption basket would consist of more Audi and less BMW

but the distortion in relative prices motivates them to choose sub-optimal consumption

basket. Second, the distortion of relative prices means resources do not shift towards

the most productive sectors. The firm which has to produce too much to meet demand

for its good produces with higher marginal costs as it moves along the concave produc-

tion function to the right. Going back to the example with car producers, BMW has to

stretch its production capacity to an extent which lowers the productivity of its workers.

In an economy with decreasing returns-to-scale a firm producing a larger amount of

goods operates with higher marginal costs and lower profits. The economy on aggre-

gate would therefore benefit if some of the production is transferred to firms producing

a lower amount of goods. Third, firms which can change their price can foresee that

they might be stuck with their price for some time. In an economy with permanent

(trend) inflation they will therefore set, for precautionary reasons, a higher than the

currently profit-maximizing price. This will create an additional markup of prices above

their marginal costs and reinforce the widening of the distribution of prices across prod-

ucts and thus the distortion in firms’ relative prices.

Our non-linear solution allows us to preserve the full distribution of prices across prod-

ucts in the model and thus study the impact of dispersed prices on price formation and

inflation. Using our framework, we uncover a previously unknown channel where the

misalignment in relative prices de-anchors inflation expectations and leads to a self-
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reinforcing inflation spiral. The higher the permanent component of inflation (trend

inflation) the higher the chances that the price dispersion inflation spiral is triggered.

This is because permanent inflation spreads out the distribution of prices as those firms

which cannot change their low prices are left behind further and further from the op-

timal price as the price level grows. When these firms can finally change their price

they create large inflation as they are catching up with the average price level and even

setting their prices above the average level so that they can keep their price unchanged

for some period again. In fact, instead of decreasing the dispersion of prices, a price re-

setting firm further contributes to the widening in the distribution of prices even in the

absence of any inflationary shocks in the economy which leads to future higher inflation

and de-anchored inflation expectations.

The traditional textbook prescription for the monetary policy authority to anchor infla-

tion expectations based on the linearized macroeconomic models relies on the Taylor

principle, according to which the nominal interest rate should rise more than one-to-

one with inflation. Blanchard and Kahn (1980) and Bullard and Mitra (2002), among

others, generalize the Taylor (1993) principle and define necessary and sufficient con-

ditions for the rational expectations equilibrium to be unique, which is known as the

determinacy region. The determinacy region provides a model-consistent definition of

what it means to anchor inflation expectations to the central bank’s target. However,

the presence of the threat that the distortion in relative prices triggers the inflation spi-

ral means that ensuring determinacy is no longer a sufficient condition for the central

bank to secure stability of inflation expectations anymore. We instead show that, to an-

chor inflation expectations and have stable inflation dynamics, the central bank needs

to respond to deviations of inflation from its target considerably more aggressively, and

give up stabilization of the real side of the economy. The required strength of the re-

sponse by central bank is defined by the ’stability region’ which we introduce and define

as representing the non-linear equivalent to the determinacy region.

One important consequence related to the stability region is that there is no global

solution of the model outside of the stability region, as price dispersion and inflation

dynamics become explosive for some part of the relevant state space. In other words, in

an economy where the central bank allows an inflation spiral to be triggered, the model

does not have a stable solution3

3The intuitive way to understand this result comes from realizing that the distribution of relative prices
defines the solution space but just before we finish the search of the global solution in the space defined
by the existing dispersion of prices the dispersion further increases. The analogical way of thinking could
be a search for extraterrestrial life in the expanding universe. As the universe expands at faster rate than
the spaceship conducting the search we can never find the definite solution.
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1. INTRODUCTION

The staggered contracting introduced by Calvo (1983) is the dominant method to model

the macroeconomic effects of nominal rigidities. While traditionally macroeconomic dy-

namics have been studied primarily in terms of (log-)linear approximations to the true

model solution, recent developments in many fields of macro increasingly require non-

linear solution techniques4. Schmitt-Grohe and Uribe (2006) stress that linear approxi-

mations to the model solution ignore the distribution of prices across product varieties

implied by Calvo pricing. Using non-linear solutions we show that dispersed prices give

rise to a new source of inflation fluctuations not present in linearized models. Inflation

widens the dispersion of prices across products which leads to a further increases in

inflation, triggering a self-reinforcing price-inflation spiral, which presents a new chal-

lenge for monetary policy in anchoring inflation expectations. To avoid self-fulfilling

inflation expectations in linearized models as a source of economic instability the cen-

tral bank must follow the Taylor principle, according to which the nominal interest rate

should rise more than proportionally with inflation (Blanchard and Kahn (1980) and

Bullard and Mitra (2002)). In times of persistently high inflation, i.e. positive trend in-

flation, Ascari and Sbordone (2014) and Coibion and Gorodnichenko (2011) show that

the Taylor principle is not sufficient and a more aggressive policy response to inflation

is required. We find that the presence of the price dispersion driven inflation spiral sig-

nificantly constrains the central bank further, in particular its ability to stabilize the real

side of the economy. In addition, trend inflation prohibits virtually any aim to stabilize

the real side of the economy.

Our paper offers two main contributions. First, we introduce the concept of the ’stabil-

ity region’ as a non-linear counterpart to the determinacy region which provides pre-

scriptions on how endogenous monetary policy can preserve stable inflation. Second,

building on Fernandez-Villaverde, Ramirez, and Schorfheide (2016) who attest pertur-

bation methods a high level of accuracy, we show that inflation stability is a necessary

condition for accuracy of the perturbation solution, and that the global solution does

not exist outside of the stability region.

Our analysis proceeds in four distinct steps. In the first step, we show that the price-

4The need to capture the inherent non-linearities of business cycles forced macroeconomists to move
beyond traditional linearization methods (see Fernandez-Villaverde, Ramirez, and Schorfheide (2016),
Mendoza (2016) and Mendoza and Villalvazo (2020) for a discussion). To understand the macroeco-
nomic effects of, e.g., time-varying volatility, occasionally binding constraints, the effect of non-standard
utility functions and off-equilibrium dynamics of big crises, an increasing number of models are solved
non-linearly. Non-linear methods are also essential in the asset pricing literature, to capture risk premia
and precautionary saving motives (Rudebusch and Swanson (2012), Andreasen, Fernandez-Villaverde,
and Rubio-Ramirez (2018)).
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inflation spiral is a global property of the model (no approximation involved) and is

independent of the solution method. We document this by studying price dispersion

dynamics from its exact (non-approximated) non-linear law of motion. We identify

threshold values of inflation across state dependence of past price dispersion. Inflation

above the threshold value triggers the price-inflation spiral. We study the analytical

approximation of the underlying law of motion governing price dispersion and discuss

how it respects the lower and upper bounds on price dispersion and inflation.

In the second step, we use a simple New Keynesian model with Calvo prices similar

to Gaĺı (2015), Anderson, Kim, and Yun (2010), Miao and Ngo (2019)) to demon-

strate that our findings in step one generalize in a full-scale model. Whenever the

price-inflation spiral drives economic fluctuations in the non-linear model solution, the

non-linear model produces substantially different (amplified) moments compared to

the linearized solution. Following the literature studying the determinacy of linearized

solutions (Ascari and Ropele (2009), Coibion and Gorodnichenko (2011), Lubik and

Schorfheide (2004)) we simulate the determinacy region and extend it by also display-

ing the stability region relevant for non-linear models. The stability region substantially

narrows down the monetary policy space given to the central bank by the determinacy

region. This is because monetary policy needs to contain self-fulfilling inflation expec-

tations induced by the price inflation spiral. The important implication of this result

is that there is no global solution outside the stability region even if the corresponding

linear solution is determined.

In the third step, we provide a novel analytical decomposition which disentangles the

economic channels through which price dispersion (spiral) impacts the real quantities

in the non-linear model. Further, we use the decomposition to explain why real rigidity

and trend inflation significantly shrink the stability region. The channels we discuss are

not new in literature; we, however, generalize them for the non-linear model. We show,

as Ascari (2004) and King and Wolman (1996), that marginal-costs and the forward-

looking element of price settings are the transmitters of price dispersion.

In the fourth step, we present stochastic simulation results for the full macro-finance

model of Rudebusch and Swanson (2012). We do so because the macro-finance litera-

ture relies on a higher-order solution and contains highly non-linear modeling features,

and thus serves as a particularly relevant field for the findings of this paper. We also

replicate the globally solved models by Anderson, Kim, and Yun (2010) and Miao and

Ngo (2019) to show that their calibration falls well into the stability region.
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1.1. LITERATURE REVIEW

Our paper relates to the literature on recent advances in solution methods for rational

expectations dynamic general equilibrium models. The price-inflation spiral was first

noticed by Andreasen and Kronborg (2020) in the context of their novel extended per-

turbation method. They find that: ”standard perturbation generates a price-inflation

spiral, which eventually may lead to explosive dynamics” ... ”because standard pertur-

bation is unable to account for a previously unnoticed upper bound on inflation with

Calvo pricing,”. Our work extends and further develops Andreasen and Kronborg’s find-

ings. We differ in several dimensions; in the depth of the analysis and in showing that

the price-inflation spiral is a global property of Calvo pricing independent of perturba-

tion solutions. We show that in the Calvo (1983) pricing model there exists a threshold

value on inflation which gives rise to a price-inflation spiral. We also show that the

upper bound on inflation is reached because of the price inflation spiral and not the

other way around as found by Andreasen and Kronborg (2020). Further, we go beyond

Andreasen and Kronborg (2020) by discussing the non-linear model’s stability proper-

ties. We provide detailed analyses of the price-inflation spiral both in the nonlinearly

solved model with Calvo pricing and as a phenomenon outside of the model solution by

focusing on the exact non-linear equation for price dispersion.

Our paper also contributes to the empirical and theoretical literature studying Calvo

pricing. Nakamura, Steinsson, Sun, and Villar (2018) provide evidence that the costs

of inflation in New Keynesian models are elusive in the data. In the Calvo model the

cost of inflation corresponds exactly to price dispersion. As a consequence our analysis

in a nonlinear setting therefore produces an even larger and counterfactually high cost

of inflation.

Our paper also strongly relates to previous research on Calvo pricing and trend inflation.

Ascari (2004), Ascari and Ropele (2009) and Ascari and Sbordone (2014) study effects

of trend inflation on the deterministic steady state in the models of time dependent

contracts (Taylor, Calvo and Rotemberg pricing). Amano, Ambler, and Rebei (2007)

study the impact of trend inflation on stochastic means of macroeconomic variables and

find that the non-linearity introduced by price dispersion implied by the second order

approximate solution increases the welfare costs of inflation. We extend this literature

by studying Calvo pricing in a stochastic non-linear setting more generally, by i) con-

sidering higher order perturbation solutions and global solutions, ii) considering other

forms of non-linearities which, similarly to the introduction of trend inflation, increase

the dispersion of prices across product varieties, and by iii) adding a formal exposition

of the channels through which the dispersion of prices transmits to the real economy.
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Ascari (2004) and Ascari and Sbordone (2014) show that trend inflation significantly

affects the cost of inflation. We add to their results our finding that the linear solution

of the model significantly underestimates the true cost of inflation in the model. Ascari

(2004) concludes that Taylor pricing should be the preferable implementation of price

stickiness because of the sensitivity of Calvo pricing to trend inflation. We extend his

findings and show that Taylor and Rotemberg pricing are more robust to non-linear so-

lution methods and more in line with the empirical evidence on the estimated Taylor

rule.

2. THE BASELINE MODEL

Our baseline model is a standard textbook style New Keynesian DSGE model with Calvo

pricing (e.g., Gaĺı (2015), Anderson, Kim, and Yun (2010), Miao and Ngo (2019))

which can be viewed as a simplified version of the Rudebusch and Swanson (2012) (RS)

model we adopt later. The model consists of a continuum of firms which operate under

monopolistic competition and are subject to nominal rigidities à la Calvo. Firms produce

with a technology that uses labor and fixed capital as production inputs. Households

have CRRA preferences over consumption and labor, and make optimal choices over

consumption, labor supply and bond holdings. The monetary authority follows a Taylor

rule. Model dynamics are driven by shocks to total factor productivity.5 Since the model

is quite standard, experienced readers may want to only skim over most of the model

description, and jump directly to the section where we discuss price dispersion and its

properties, section 3.

2.1. HOUSEHOLDS

The household maximizes lifetime utility of the form

U(Ct, Nt) = Et

∞∑
t=0

βt
[
C1−ϕ
t

1− ϕ
+ χ0

(1−Nt)
1−χ

1− χ

]
, ϕ, χ > 0, (1)

where ϕ, χ, χ0 > 0. The intertemporal elasticity of substitution (IES) is 1/ϕ, and the

Frisch labor supply elasticity is given by (1−N)/χN , where N is the steady state level

5As we solve the model globally and the global solution is subject to the curse of dimensionality, we
consider a parsimonious setup with a low number of state variables.
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of hours worked. The households’ problem is subject to the flow budget constraint:

Bt + PtCt = WtNt +Dt +Rt−1Bt−1 − τt. (2)

In equation (1), β is the discount factor. Utility (U) at period t is derived from con-

sumption (Ct) and leisure (1−Nt). Et denotes expectations conditional on information

available at time t . As the time endowment is normalized to one, leisure time (1−Nt)

is what remains after spending some time working (Nt). WtNt is labor income, Rt is

the return on the one-period nominal bond, Bt. Dt is dividend income, τt are lum-sum

taxes by the government.6

2.2. FIRMS

Final good firms operate under perfect competition with the objective to minimize ex-

penditure subject to the aggregate price level Pt =
[∫ 1

0
P 1−ε
t (i)(di)

] 1
1−ε

, where Pt(i)

is the price of the intermediate good produced by firm i, using production technology

Yt =
[∫ 1

0
Y

ε−1
ε

t (i)di
] ε
ε−1

. Final good firms aggregate the continuum of intermediate goods

i on the interval i ∈ [0, 1] into a single final good. Parameter ε determines the elasticity

of substitution between varieties. The cost-minimization problem of final good firms

delivers demand schedules for intermediary goods of the form:

Yt(i) =

(
Pt(i)

Pt

)−ε
Yt. (3)

A continuum of intermediate firms operates in the economy. Intermediate firm i pro-

duces according to a Cobb-Douglas production function, where θ denotes the capital

share, and where K̄ refers to the fact that firms have fixed capital:7

Yt(i) = AtK̄
θ(Nt(i))

1−θ, (4)

Technology follows the autoregressive process:

logAt = ρA logAt−1 + σAε
A
t , ε

A
t ∼ N (0, 1) . (5)

6The government is assumed to follow a balanced budget each period financing constant government
expenditure, G, each period, i.e. τt = G.

7Fixed capital can be interpreted as a model with endogenous investment that features high adjust-
ment costs in investment. Capital which is treated as fixed implies decreasing return to scale (DRS) and
is supported by the arguments in McCallum and Nelson (1999), for instance a very small correlation
between capital and output at business cycle frequency, and the fact that capital is in general changing
little in the short run.
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Intermediate firms facing Calvo contracts maximize the present value of future profits

by choosing price, Pt(i),

Et

{
∞∑
k=0

ζkQt,t+k
Pt
Pt+k

[Pt(i)Yt+k(i)− Pt+kWt+kNt+k(i)]

}
, (6)

where Qt,t+k = β
(
Ct+k
Ct

)−ϕ
is the real stochastic discount factor from period t to t + k.

The Calvo parameter ζ represents the probability that a firm is not able to reset its price

in a given period, which controls the average frequency of price changes. Wt denotes

the real wage, the term Pt+kWt+jNt+j(i) represents the cost of labor in nominal terms.

The optimal price chosen by the price resetting firm, P ∗t , relative to aggregate price

index, Pt, is p∗t =
P ∗t
Pt

and equals a weighted average of current and future expected real

marginal costs. The ratio, p∗t =
P ∗t
Pt

, is often referred to as the price-adjustment gap in

the literature (c.f. Ascari and Sbordone (2014)). We follow this terminology throughout

the paper, and write:

(p∗t )
1+ θε

1−θ =
ε

ε− 1

∞∑
k=0

Υt+kMCt+k, (7)

where Υt+k =
ζkEtQt,t+kΠ

ε
1−θ
t+k Yt+k∑∞

k=0 ζ
kEtQt,t+kΠε−1

t+kYt+k
, and where Πt is gross inflation. Throughout the

paper, Πt denotes the gross inflation rate, defined as Πt = Pt/Pt−1; lower case variable

πt instead denotes the (annualized) net inflation rate in percent, πt = 100 log(Π4
t ). Υt+k

is the time varying mark-up implied by price rigidity and ε
ε−1

is the mark-up implied by

monopolistic competition. MCt is average real marginal cost, defined as:

MCt =
1

1− θ

(
Wt

At

)(
Yt
K̄At

) θ
1−θ

. (8)

2.3. MONETARY POLICY

The model is closed by a monetary policy rule:

log(it) = log(̄ı) + φπ[log(Πt)− log(Π)] + φY log

(
Yt
Ȳ

)
, (9)

where it is the quarterly policy rate and ı̄ = Π/β. Π is the inflation target of central

bank defining the value of trend inflation. Ȳ denotes the steady-state level of output, Yt
.
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3. NON-LINEAR IMPLICATIONS OF PRICE

DISPERSION

The properties of price dispersion in non-linear settings differ substantially from those

of the linearized version. In the following, we discuss how price dispersion, as implied

by the exact non-linear law of motion, given by equation (14) below, affects the global

properties of the model. Importantly, the analysis of this section is independent of any

choice of (approximate) solution method. Section 3.1 derives the recursive formulation

of price dispersion and shows that it can be interpreted as a resource cost, reducing

output produced per unit of inputs. Section 3.2 discusses the presence and effect of

upper and lower bounds on price dispersion. These bounds define a region over which

price dispersion is well-defined, but beyond which a (real) solution for price dispersion

ceases to exist and where the model economy’s production stops. Section 3.3 defines

the threshold level of inflation which triggers an inflation spiral and de-anchors inflation

expectations in the model. Section 3.4 studies the numerical properties of the true, fully

non-linear price dispersion (as described by the actual non-linear law of motion) and its

Taylor series expansions. This analysis helps us to build intuition for how the behavior

of price dispersion affects solution and stability of the simulation in our non-linearly

solved New Keynesian model of section 4.

3.1. RESOURCE COST OF PRICE DISPERSION

Price dispersion is defined by aggregating output across firms (firm i’s production func-

tions), where we equalize the supply of intermediate good i, equation (4), with the

final good producers’s demand curve for intermediate good i, equation (3), to obtain

AtK̄
θN1−θ

t (i) =
(
Pt(i)
Pt

)−ε
Yt . Assuming that workers are homogeneous across i, the

aggregation of labor input is Nt =
∫ 1

0
Nt(i)di and together with the definition of price

distortion8, St =

[∫ 1

0

(
Pt(i)
Pt

) −ε
1−θ

di

]1−θ

, it delivers the aggregate production function,

YtSt = AtK̄
θN1−θ

t . (10)

We define St so that the cost of prices dispersed across product varieties can be directly

expressed in terms of output loss. Variable St is, therefore, a model-consistent index

8Note that the literature typically differentiates between price distortion, St, and price dispersion,

S
1

1−θ
t .
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of price distortion and summarizes the resource costs induced by the inefficient price

dispersion featured in the Calvo model. As a consequence of price dispersion the equi-

librium allocation is not optimal. The subset of firms which cannot reset their price,

charge either a lower or higher price for their product varieties than price-resetting

firms. Since the demand for intermediate output comes from a perfectly competitive fi-

nal good sector, where intermediate goods enter symmetrically and with equal weight,

the firm charging a lower (higher) price than the price-resetting firm is not efficiently

using its production capacities and produces too much (little). The efficient resource

allocation dictates that each firm produces the same amount of goods. Formally, the

loss of GDP due to price dispersion, ∆t, in percent can be defined as

∆t = 100
(
1− S−1

)
. (11)

We can use the Calvo (1983) result and rewrite S
1

1−θ
t recursively as9

S
1

1−θ
t ≡

∫ 1

0

(
Pt (i)

Pt

) −ε
1−θ

di, (12)

= (1− ζ) (p∗t )
−ε
1−θ + ζ (Πt)

ε
1−θ S

1
1−θ
t−1 .

3.2. LOWER AND UPPER BOUND ON PRICE DISPERSION

Several points regarding the properties of equation (12) are worth highlighting for

future discussion. First, the resource cost of price dispersion, St, is a concave func-

tion of the ratio of two price indexes,
[∫ 1

0
Pt(i)

−ε
1−θ

]
and aggregate price index P

−ε
1−θ
t =[∫ 1

0
P 1−ε
t (i)di

] −ε
(1−ε)(1−θ)

. The bigger the difference between these indexes the wider is the

distribution of prices across product varieties. Yun (1996) and Schmitt-Grohe and Uribe

(2006) show that this ratio implies that price distortion St is bounded from below by 1,

St ≥ 1.10 When St = 1 all firms have the same prices in the economy.

Second, the Calvo pricing mechanism also implies an upper bound on inflation, Πt <

Πupper, which consequently implies a maximum admissible level of price dispersion,

Suppert , consistent with this inflation upper bound, for given St−1. To see this, let us make

9S
1

1−θ
t = (1− ζ)

(
P∗
t

Pt

) −ε
1−θ

+ (1− ζ)ζ
(
Pt−1

Pt

) −ε
1−θ

+ (1− ζ)ζ2
(
Pt−2

Pt

) −ε
1−θ

. . .

where the expansion from time t− 1 can be summarized by St−1.
10We show in the appendix that the same result holds for price dispersion under decreasing returns to

scale, S
1

1−θ
t .
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use of the definition of the aggregate price index, and express the price-adjustment gap,

p∗t = P ∗t /Pt, as a function of inflation only,

p∗t =

[
1− ζ (Πt)

ε−1

1− ζ

] 1
(1−ε)

. (13)

Substituting this into equation (12) we obtain:

S
1

1−θ
t = (1− ζ)

[
1− ζ (Πt)

ε−1

1− ζ

] ε
(ε−1)(1−θ)

+ ζ(Πt)
ε

1−θS
1

1−θ
t−1 . (14)

The power term in (14), ( ε
(ε−1)(1−θ)), implies that price dispersion turns complex unless[

1−ζ(Πt)ε−1

1−ζ

]
> 0, which defines the inflation upper bound as Πt < Πmax ≡ ζ

1
1−ε 11.

The dispersion of prices is therefore bounded both from below and above, creating two

bounds on the underlying true policy function of St.

3.3. PRICE DISPERSION INFLATION SPIRAL

Inflation (together with structural parameters ζ, ε, θ) determines the dynamic stability

of the recursive formulation of price dispersion given by the non-linear first-order dif-

ference equation (14). From this equation, we can identify, for each value of St−1, the

specific threshold value of inflation, Πthreshold
t , beyond which St > St−1, i.e., inflation for

which price dispersion becomes increasing in its own past, so that, the process for St
is not stable. Figure 1 plots this threshold value of inflation, Πthreshold

t as a function of

St−1. The red-shaded region shows the stability region of Πt for which St < St−1. Levels

of Πt below inflation threshold Πthreshold
t imply stable price dispersion dynamics; levels

of Πt above Πthreshold
t instead trigger explosive price dispersion dynamics. To illustrate

the relevance of the inflation threshold for the perturbation model solutions we discuss

in section 4, we include policy functions, Πt = g(St−1, A, σ) from the first and third per-

turbation solution as an example12 Plotted policy functions represent the relationship

between Πt and state variable St−1, when exogenous shocks are zero. Inflation above

the threshold value Πthreshold
t < Πt = g(St−1, A, σ) triggers the price (dispersion) infla-

tion spiral. In this case inflation and price dispersion are self-reinforcing and as a result

11Note that Ascari (2004) derives an inflation upper bound for the deterministic steady state. The
bound we present here holds also for the cyclical component of inflation and is often tighter. In our
model the inflation upper bound is 11.72% for quarterly steady-state inflation versus 5.92% for for the
cyclical deviation of inflation from its steady-state.

12Policy functions plotted here depend on a precise model and model parameterization: here they come
from the benchmark model (see Table 1).
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inflation expectations are no longer anchored. High inflation, Πt, at time t, leads to

high dispersion of prices across product varieties, St, as only some firms can adjust their

prices. The high dispersion of prices, St, in turn calls for a strong adjustment in prices

and thus high inflation in the next period, Πt+1. These reinforcing dynamics continue,

and hence start the price-inflation spiral. Price dispersion at the same time increases the

resource costs implied by dispersed prices (see equation (10)), which effectively leads

to a decreased supply of goods, much like a negative TFP realization.

Figure 1: Threshold and Stability Region, Implying Stable Price Dynamics

Note: The (red) line defines the inflation threshold, Πthreshold. Outside the (red-shaded) stability region,
where St < St−1, price dispersion triggers a self-enforcing inflation spiral. Policy function from first (blue)
and third (green) order perturbation solution illustrate that the unstable dynamics may arise already at mild
inflation levels far below the inflation upper bound.

We show in the next section that for standard model parameterizations policy functions

quickly fall outside of the stability region in a wide variety of (including the textbook)

NK models. As in the example in Figure 1, the inflation spiral is triggered already for

price dispersion implying mild inflation (above 1.3% quarterly). Quarterly inflation of

1.3% lies far away from the level of inflation implied by the inflation upper bound, of

5.92%. The positive slope of the threshold line is driven by the loading ζ(Πt)
ε

1−θ on
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S
1

1−θ
t−1 in equation (14). Intuitively, a fraction ζ of firms which cannot adjust their prices

towards the optimal price will further increase the dispersion of prices across product

varieties, St. On the other hand, the price adjustment gap, P
∗
t

Pt
=
[

1−ζ(Πt)ε−1

1−ζ

]
, in equation

(14) is decreasing with inflation. The fraction (1− ζ) of price changing firms decreases

dispersion by optimally choosing its price by closing the price adjustment gap, P ∗t
Pt

.

Andreasen and Kronborg (2020) have previously documented the importance of re-

specting the inflation upper bound for the precision of the approximate model solution.

In contrast to Andreasen and Kronborg (2020), we stress here that the unstable dynam-

ics of higher-order solutions of a model with Calvo pricing are not implied by ignoring

a upper bound on inflation, but, instead, by the threshold on inflation, Πthreshold
t . The

threshold we identify is obtained directly from the actual non-linear equation that char-

acterizes price dispersion dynamics, so that the explosive dynamics beyond that thresh-

old are a true feature of the Calvo model and not an artefact of an approximation or the

choice of solution method.

3.4. NON-LINEAR LAW OF MOTION OF PRICE DISPERSION

AND APPROXIMATION ACCURACY

Figure 2 provides intuition for our main quantitative results (Table 2 in the section 4).

It visually shows how different orders of a polynomial approximation of the underlying

price dispersion function respect the lower and upper bound on price dispersion. It also

highlights when high and low realization of inflation yields approximations outside of

the radius of convergence of Taylor series. Figure 2 plots the true functional form of

price dispersion, given by equation (14), together with the analytical approximations

given by first, second and third-order Taylor series expansions to that equation. Price

dispersion, St, is plotted as a function of Πt at the point St−1 = S̄. Dashed-dotted lines

are first, second and third-order approximation of St at the point π = 0% in panel 2a

and π = 4% in panel 2b. Price dispersion, St, is a highly non-linear function in inflation

which has been historically approximated simply by a line (red dashed-dotted line).

Up to a first-order approximation around zero steady state inflation price dispersion is

always constant and equal to 1 (panel 2a), and price dispersion does not have an effect

on the model solution. Instead, linear approximation around a non-zero inflation steady

state or higher-order approximation at any point of steady state inflation introduces the

process of price dispersion into the model equilibrium (panels 2a and2b).

Figure 2 illustrates several important properties of the model approximation discussed

in the next section. First, a linear approximation is likely to violate the lower bound
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on St as seen in 2b. Second, at empirically relevant values for steady-state inflation

the slope of the line approximating the true St implies lower values of approximated

St = s(π̄) + s′(π̄)ŝt than the true St as Πt increases and therefore the upper bound on

inflation is rarely reached in linearly approximated models. Third, the second-order ap-

proximation respects the lower bound on St and approximates the underlying function

St fairly well. Fourth, the third-order approximation matches the underlying function St
remarkably well for inflation increases but delivers large approximation errors in case

of inflation decreases. For large price drops it violates the lower bound on St.

Figure 2: Analytical approximation of St
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(a) Approximation at π = 0%.
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(b) Approximation at π = 4%.

Note: Blue solid line, St, represents price dispersion as a function of Πt, as given by equation (14), at point
St−1 = S̄. Dash-dotted lines are first (red), second (yellow) and third (purple) order approximations of St
at π = 0% and at π = 4%. Light red Horizontal and vertical dashed lines represent the lower bound on St
and upper bound on Πt.

4. RESULTS FROM BASELINE NK MODEL

Section 3 established the non-linear properties of price dispersion by studying the equa-

tion that governs its true non-linear law of motion in isolation. This section instead

shows that the consequences of Calvo pricing we outlined dominate the dynamic be-

havior of the non-linearly solved dynamic general equilibrium New Keynesian model

with important implications for monetary policy. For this purpose, we solve and simu-

late the example model from section 2 with both perturbation (local) and with global

approximation methods.13 First, we calibrate the model by following a standard choice

of parameters in the literature. Second, we introduce the concept of the stability region
13The perturbation solutions are obtained as implemented in Dynare routines. Simulated time series

from higher-order solutions are pruned. As a global approximation method we adopt a policy function/
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as a non-linear analogue to the determinacy region. Third, we show that solutions out-

side of the stability region deliver explosive dynamics. Forth, we build on the findings

of Ascari and Ropele (2009) and Coibion and Gorodnichenko (2011) that the Taylor

principle breaks under trend inflation and show that the stability region quickly shrinks

with positive trend inflation. Fifth, we follow the literature on real rigidities as in Levin,

David Lopez-Salido, Nelson, and Yun (2008) and discuss the effect of decreasing returns

to scale (as the most wide spread form of real rigidity) on the stability region.

4.1. PARAMETERIZATION

Table 1: Parameterization and Scenarios

β Discount factor 0.99 ζ Calvo parameter 0.76
ϕ Coeff. of RRA 2 ρA Autocorrelation, TFP shock 0.95
ε Elasticity of subst. 6 σA Volatility, TFP shock 0.007

1−N̄
N̄

1
χ

Frisch elast. 0.28 G/Y government spending to GDP 0.17

Benchmark (A): zero trend inflation, decreasing returns-to-scale: π̄ = 0, θ = 1/3:
case A1: φπ = 2.5 φY = 0 Simple TR, Woodford(2003)
case A2: φπ = 2.2 φY = 0.43 Coibion and Gorodnichenko (2011)
case A3: φπ = 1.53 φY = 0.77 Taylor (1999)
Trend inflation (B): 2% trend inflation, decreasing returns-to-scale: π̄ = 2, θ = 1/3:
case B1: φπ = 2.5 φY = 0 Simple TR, Woodford(2003)
case B3: φπ = 2.5 φY = 0.5 Guerrieri and Iacoviello (2015)
Real rigidity (C): zero trend inflation, linear-in-labor production: π̄ = 0, θ = 0
case C1: φπ = 2.5 φY = 0 Simple TR, Woodford(2003)
case C2: φπ = 1.53 φY = 0.77 Taylor (1999)

Note: The first part presents baseline parameters common across all model parameterization scenarios. The
second part specifies the parameters for cases A1-C2, where parameters φπ, φY , π̄, θ differ across scenarios.
Scenarios A consider zero trend inflation and DRS in production.
Scenarios B consider positive trend inflation and DRS in production.
Scenarios C consider zero trend inflation and no DRS in production.

We summarize the choice of parameters in Table 1. Parameter values fall well into

the region typically chosen in the literature (e.g. Gaĺı (2015), Rudebusch and Swan-

son (2012)). The bottom part of Table 1 presents three model scenarios we consider

to demonstrate the role of monetary policy in anchoring inflation expectations. The

benchmark scenarios (cases A) rely on a standard assumption of zero trend inflation

and decreasing returns to scale. Scenarios B relax the assumption of zero trend infla-

tion and scenarios C consider the economy in the absence of real rigidity (adopting

time iteration method developed by Coleman (1990, 1991) and adopted, e.g. in Rabitsch (2012, 2016).
Appendix A provides a description of the algorithm for our example model. Alternatively, we also imple-
ment a projection method (Chebyshev collocation) as in Anderson, Kim, and Yun (2010), which yields
virtually identical results.
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instead a linear-in-labor production function). We analyze several cases for the Taylor

rule calibrations. We choose popular estimates of the Taylor rule so that they lie i) in,

ii) on the border and iii) outside of the stability region. Consequently, we demonstrate

the resulting model dynamics.

4.2. EQUILIBRIUM STABILITY AND THE ANCHORING OF EX-

PECTATIONS

The standard way of closing a macroeconomic NK model is the assumption that mone-

tary policymakers set interest rates based on a simple Taylor rule. It is well known that

to anchor inflation expectations in the linearized version of the model the weight on in-

flation must follow the Taylor (1993) principle, according to which the nominal interest

rate should rise more than proportionally with inflation. Blanchard and Kahn (1980)

and Bullard and Mitra (2002), among others, generalize the Taylor (1993) principle

and define necessary and sufficient conditions for the rational expectations equilibrium

to be unique, which is known as the determinacy region. The determinacy region pro-

vides a model-consistent definition of what it means to anchor inflation expectations by

the central bank. In the empirical work Weber, D’Acunto, Gorodnichenko, and Coibion

(2022) defines anchored expectations as: ”changes in short-run inflation expectations

that are largely uncorrelated with changes in long-run expectations”. In other words,

the central bank achieves its targeted inflation in the medium run. In NK macro model

shocks which might, e.g., temporally lead to increased inflation are consequently offset

by a monetary tightening, so that inflation returns to its steady state. The determinacy

region ensures that the monetary policy response is strong enough.

We add to these well-known results by showing that model determinacy is not a suffi-

cient condition for model stability in non-linearly solved models with Calvo prices. We

show numerically that ensuring that St ≤ St−1 over the largest part of the state-space

is the necessary condition for model stability. This result holds both for globally solved

models and higher order (local) perturbation methods.

Using the insights and results from section 3 we define the stability region as a non-

linear analogue to the determinacy region. The stability region is the space spanned

by φπ and φy for which St ≤ St−1, i.e., for which inflation falls below the inflation

threshold. Alternatively, the stability region can be thought of as the region for which

the global solution exists and for which perturbation methods generate stable model
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dynamics. Formally, the region defined by

H (Π|(St−1 = St)) ≥ max
(
ĥ(P1(S,A), γ, σ), . . . , ĥ(P99(S,A), γ, σ)

)
(15)

provides a sufficient condition for the stability of simulated model dynamics. The func-

tion ĥ is the third order approximation to the function mapping the state vector to

inflation. γ is the vector of model parameters. σ scales the amount of uncertainty in

the model. The inflation policy function is evaluated over the relevant state space. As

the relevant state space we take values that lie between the 1st and 99th percentile of

the simulated bivariate distribution of St−1 and At, denoted by P1(S,A) and P99(S,A).14

FunctionH calculates the inflation threshold based on the exact non-linear form of price

dispersion in equation (14) conditional on St = St−1.

We use the following algorithm to calculate the stability region. First, we compute

the threshold inflation from the non-approximated recursive form of price dispersion

using numerical solver. Threshold inflation represents inflation for which St = St−1

in equation (14). Second, we use the third order perturbation solution15 to simulate

the model and calculate the state space as implied by the 1st to 99th percentile of

the simulated bivariate distribution of S and A. Third, we use the inflation policy

function from the third order solution to calculate the implied levels of inflation over this

state space, and find the maximum implied inflation. Fourth, we evaluate whether the

implied inflation lies below or above the inflation threshold (i.e., within or outside the

stability region (see Figure 1). Inflation outside of the stability region implies unstable

dynamics.

4.3. STABILITY UNDER BENCHMARK SCENARIO

To assess stability of the non-linear model we build on the example of Ascari and Sbor-

done (2014) and Coibion and Gorodnichenko (2011). We simulate the determinacy

region for the calibration of our benchmark example model and extend it by displaying

the stability region relevant for non-linear models. The gray area in Figure 3 depicts the

14This choice is driven by the experience that model moments are well contained at this percentile.
In contrast, we experienced first signs of instability (amplification of moments) when using the P5(S,A)
and P95(S,A).

15Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2006) show that higher order perturbation and
projection methods deliver very similar results. We use the third order perturbation solution, because,
as we show, it delivers virtually the same policy functions as a global solution within the stability region,
yet global solutions cannot be obtained when model dynamics imply instability. Appendix A explains this
is the case because the relevant state space in dimension St−1 over which the solution would need to be
computed becomes unbounded for regions where St > St−1. Appendix B shows policy function solutions
for the various scenarios of this section to develop these points further.
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determinacy region which demonstrates the well-known generalized Taylor principle

that the central bank should respond more than one-to-one to inflation. The green area

in Figure 3 instead is specific to the non-linearly solved model and shows the stability

region for which St ≤ St−1. In other words, the determinacy region represents the first

order condition for inflation stability whereas the condition St ≤ St−1 defines the stabil-

ity region in non-linear models. The gray area of the φy and φπ space defines the region

where the model satisfies Blanchard and Kahn (1980) conditions and can be solved by

perturbation methods. Once out of the green region, the perturbation solution, nonethe-

less, features large local instabilities in the simulation and consequent wild dynamics

of second moments as we present in Table 2. In practice, even a small part of the state

space in a model simulation plagued by unstable price dispersion dynamics leads to un-

reasonable amplification in simulated model moments. For these reasons, obtaining a

global solution outside of the stability region is not feasible. The red triangles in Figure

3 represent the calibration of the Taylor rule coefficients employed in benchmark scenar-

ios A1-A3 (c.f., Woodford (2003), Coibion and Gorodnichenko (2011), Taylor (1999)).

The gray marks depicts other seminal estimates from a literature survey (summarized

in Table 8). While these examples of Taylor rule coefficients fall well into the determi-

nacy region, once the non-linear aspects of the solution (e.g. dispersion of prices and

inflation uncertainty) are taken into account many of the empirically relevant estimates

quickly leave the stability area. Namely, a higher weight on the output gap16, plays a

potentially destabilizing role and calls for a more aggressive policy response to inflation

even if an economy stays in the determinacy region.

16φy > 0.2 is an common estimate, see Taylor (1999), Judd and Rudebusch (1998) and Clarida, Gali,
and Gertler (2000) and others.

Undesired Consequences of Calvo Pricing in a Non-linear World
NBS Working Paper | 1/2023

23



Figure 3: Determinacy vs. Stability Region for the Simple Model, Scenario A
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Note: Simulated determinacy (gray) and stability (green) region. Red triangles represent scenarios A1-A3.
The stability region denotes the region where St−1 < St over the 1st to 99th percentile of the simulated
bivariate distribution state variables, denoted P1,99(S) and P1,99(A). The region 95 % Conf. does the same
for P5,95(S) and P5,95(A). Gray ’x’ marks correspond to other empirically found Taylor rule coefficients in
the literature (Table 8 ).

Table 2 accompanies Figure 3 and shows simulated moments for the benchmark sce-

narios represented by the red triangles. The simple feedback to inflation-only Taylor

rule in case A1 falls well into the stability region. The model solutions of third order

and global solution method yield almost identical and stable moments (and policy func-

tions). This attests higher order perturbations a high solution accuracy. This is in line

with previous findings by Fernandez-Villaverde, Ramirez, and Schorfheide (2016), who

show that higher order perturbation methods feature small approximation errors. Our

results confirm these findings but only within the stability region. The lower part of

Table 2 shows how much output in percent is lost due to dispersion of prices across

products. Well within the stability region price dispersion is contained and in the range

of empirical estimates (i.e. Nakamura, Steinsson, Sun, and Villar (2018)) and the lower

and upper bounds on π and S are respected.
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Table 2: Model-Based Unconditional Moments: Benchmark scenarios (A1-A3)

case A1: case A2: case A3:

φπ = 2.5, φY = 0 φπ = 2.2, φY = 0.43 φπ = 1.53, φY = 0.77

1st order 3rd order global 1st order 3rd order 1st order 3rd order

Moments of macroeconomic variables

std(C) 2.73 2.74 2.74 2.43 4.47 2.16 16.37

std(N) 0.93 0.94 0.94 1.21 2.20 1.47 11.89

std(i) 1.76 1.76 1.76 3.72 6.23 5.55 39.54

std(π) 0.70 0.70 0.70 2.89 5.01 4.94 36.12

Behavior of price dispersion and implied output loss, ∆t = 100 (1− S−1)

mean(∆) -0.00 0.05 0.05 -0.00 0.87 -0.00 1.85

std(∆) 0.00 0.06 0.06 0.00 2.11 0.00 14.02

max(∆) 0.00 0.42 0.43 0.00 16.85 0.00 67.47

min(∆) -0.00 0.00 0.00 -0.00 -7.76 -0.00 -143.34

πt > πupper 0.00 0.00 0.00 0.00 0.67 0.00 20.35

S < 1 0.00 0.00 0.00 0.00 12.63 0.00 44.98

Note: Implied model moments for calibration from the stable (A1), borderline (un)stable (A2) and unstable
(A3) but determined region. All variables are quarterly values expressed in percent, apart from inflation
and interest rates, which are expressed at an annual rate. The mean, standard deviation, minimum and
maximum value of price dispersion are expressed in terms of implied output loss. We report the percentage
of simulation periods, in which price dispersion travels to regions of the state space that are in violation of
the upper and lower bound of π and S. Macro moments are for consumption, hours worked, the nominal
interest rate and inflation.

The Taylor rules of scenarios A2 (borderline (un)stable) and A3 (unstable) document

that the simulated moments of macro variables show a largely elevated volatility under

the third order solution compared to the linear solution; as (a substantial part of) the

relevant state space is plagued by unstable price dispersion dynamics no global solution

can be obtained. The third order solution in scenarios A2 and A3 implies significant

output losses each quarter (0.87% and 1.85% respectively). Even though mean output

losses are far from what is suggested by empirical evidence (i.e. Nakamura, Steinsson,

Sun, and Villar (2018)), the volatility of ∆t rises to clearly counterfactual levels. Higher-

order solutions produce states of the world when the quarterly lost output due to price

dispersion reaches 16.85% (A2) or respectively 67.47% (A3). The ’negative losses’ of

output -7.76% or -143.34% in the third-order solution reflect the perturbation solution’s

inability to respect the bound of St ≥ 1, which is violated in 12.63% or 44.98% of cases.

The percentage of simulation periods with violations of bounds on πt ≤ πupper, lies at
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0.67% or 20.35%.17

To better visualize the part of the model’s state space that suffers from a local non-

stability, we also inspect policy functions under the various settings. To save space this

analysis is relegated to appendix B for interested readers.

In the rest of this section, we investigate how two – for monetary policy major and

empirically important – modifications of the model affect the stability region.

4.4. STABILITY UNDER POSITIVE TREND INFLATION AND

ABSENCE OF REAL RIGIDITY

Recent theoretical and empirical work of Ascari and Sbordone (2014), Coibion and

Gorodnichenko (2011), Ascari and Ropele (2009), Bauer and Rudebusch (2017) among

others shows that the conduct of monetary policy should be analyzed by appropriately

accounting for positive trend inflation targeted by policymakers. Using different theo-

retical and empirical models the literature on trend inflation finds that positive trend

inflation tends to destabilize inflation expectations and requires a much stronger re-

sponse of monetary policy to inflation.

In a similar fashion, the monetary policy literature (see e.g. chapter 3 of Woodford

(2003), Levin, David Lopez-Salido, Nelson, and Yun (2008) and Marencak (2022))

has emphasized that the degree of real rigidity in the economy is another key element

forming the determinacy space and anchoring inflation expectations. Woodford (2003)

argues that nominal rigidities in quantitative models for monetary policy analysis need

to be accompanied by some form of real rigidity to be able to amplify the real effects of

monetary disturbances. Real rigidities are the mechanism which lowers firms’ incentive

to increase prices in the face of a rise in nominal demand or productivity. To analyze the

way monetary policy anchors inflation expectations in the non-linear model we choose,

for illustration, the most wide spread way of introducing real rigidity in the form of

decreasing return to scale.

In Figure 4 we show that i) positive trend inflation significantly shrinks the stability

region and requires monetary policy to renounce responding to the real side of the

economy; ii) the absence of real rigidity widens the stability region and significantly

improves the ability of monetary policy to anchor inflation expectations.

17We should note at that the amplification in moments in the unstable cases does not arise only because
of violation of lower and upper bounds on price dispersion and inflation. The counterfactual amplification
remains when excluding simulation periods where bound were violated from the sample.
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Figure 4a shows, in line with Ascari and Sbordone (2014), that already with mild posi-

tive annualized trend inflation of 2% the determinacy region shrinks significantly. After

taking the non-linear aspects of the solution into account the model prescribes monetary

policy to abstain from virtually any aim to stabilize the real side of the economy and re-

spond solely to inflation. In the next section we analyze in detail the channels through

which trend inflation contributes to the instability of the non-linear solution. Ascari

and Sbordone (2014) show that the determinacy of the linear solution shrinks with

trend inflation because price-setting firms are more forward-looking and the inflation

rate becomes less sensitive to current economic conditions. In non-linear settings, with

an active price-inflation spiral, the current output levels do not reflect future inflation

induced by price dispersion and the stability region shrinks even more substantially.

Figure 4b shows that the presence of real rigidity has no impact on the determinacy re-

gion and as soon as the Taylor principle is satisfied inflation expectations are anchored.

However, the absence of real rigidity has a significant impact on the stability region.

Without the real rigidity, the ability of monetary policy to respond to the real economy

increases. A lower degree of real rigidity makes stability sustainable at higher levels of

φy. In the next section we show in detail that the reason is the wedge between opti-

mal marginal costs at the firm level and aggregate marginal costs (see equation (19)).

Firms with higher market share produce with higher marginal cost as they move along

on the concave (as opposed to linear) production function to the right which makes the

inability to adjust prices more costly in terms of aggregate output. Decreasing returns

to scale magnify the dispersion of prices and the power on St). Signals from the real

side of the economy do not fully reflect the price inflation spiral. Monetary policy re-

sponding to deviations of output does not anchor inflation expectations in the model

with real rigidities.
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Figure 4: Stability region under Positive Trend Inflation and Absence of Real Rigidity
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(a) Trend Inflation π = 2%.
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(b) DRS θ = 0.

Note: Simulated determinacy (gray) and stability (green) region for scenarios B (left) and C (right). Red
triangles represent model parameterization scenarios B1-B2 and C1-C2 respectively. The stability region
denotes the region where St−1 < St over the 1st to 99th percentile of the simulated bivariate distribution
state variables, denoted P1,99(S) and P1,99(A). The region 95 % Conf. does the same for P5,95(S) and
P5,95(A). Gray ’x’ marks correspond to other empirically found Taylor rule coefficients in the literature (Table
8 )

Table 3 shows the implied (cases B1 and B2) model moments from the stable and un-

stable calibration for positive trend inflation and moments for the benchmark model

without decreasing returns to scale (case C2)18. The unstable scenario B2 demonstrates

the strong impact of trend inflation on model dynamics. For instance, the standard

deviation of consumption grows from 3.13% quarterly standard deviation to 104.67 %

when moving from the stability to the instability region by increasing the response to

the real side of the economy in the Taylor rule. Moments for case C2 demonstrate that

even when the NK model is characterized only by mild non-linearities (no trend infla-

tion, no decreasing returns to scale), standard Taylor rule specifications can easily fall

outside the stability region.

18Case C1 is stable and moments of third order and global solution coincide.
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Table 3: Model-Based Unconditional Moments: Scenarios B and C (B1-B2, C2)

case B1: case B2: case C2:

φπ = 2.5, φY = 0. φπ = 2.5, φY = 0.5 φπ = 1.53, φY = 0.77

1st order 3rd order global 1st order 3rd order 1st order 3rd order

Moments of macroeconomic variables

std(C) 3.11 3.13 3.13 5.12 104.67 2.13 10.52

std(N) 1.05 1.06 1.06 2.21 47.91 1.00 5.54

std(i) 1.80 1.79 1.79 6.11 108.81 9.02 42.60

std(π) 0.72 0.72 0.72 5.01 93.33 8.60 41.12

Behavior of price dispersion and implied output loss, ∆t = 100 (1− S−1)

mean(∆) 0.94 1.01 0.54 0.97 -27.33 -0.00 1.72

std(∆) 0.35 0.37 0.37 2.44 223.17 0.00 9.01

max(∆) 1.94 2.72 2.23 7.86 99.95 0.00 52.27

min(∆) 0.01 0.48 0.01 -5.61 -3999.1 -0.00 -71.58

πt > πupper 0.00 0.00 0.00 0.00 26.25 0.50 23.38

S < 1 0.00 0.00 0.00 35.57 38.42 0.00 42.56

Note: Implied model moments for calibration from the stable and unstable but determined region. All vari-
ables are quarterly values expressed in percent, apart from inflation and interest rates, which are expressed
at an annual rate. The mean, standard deviation, minimum and maximum value of price dispersion are
expressed in terms of implied output loss. We report the percentage of simulation periods, in which price
dispersion travels to regions of the state space that are in violation of the feasible regions. Macro moments
are for consumption, hours worked, the nominal interest rate and inflation.

5. ECONOMIC INTERPRETATION - TRANS-

MISSION CHANNELS

In section 3 we explained that efficient resource allocation dictates that each firm pro-

duces the same amount of goods. This section discusses in detail the economic mech-

anism through which the non-linear model solution, together with trend inflation and

decreasing returns-to-scale, amplify economic shocks and lead to excessive model dy-

namics. Let, in the following, variables carrying an asterisk denote prices and quantities

of a firm that, in period t, is allowed to re-set its price optimally. Let variables without

asterisk denote aggregate, economy-wide variables, that include firms that are not al-

lowed to re-set their price in the current period and are stuck with prices from the past.

Figure 5 plots the distribution of prices of optimizing firms (P ∗t ) relative to aggregate
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Figure 5: Simulated Distribution of Price-adjustment Gap

Note: The shaded areas plot the simulated distribution of optimal relative prices, p∗t =
P∗
t

Pt
, which captures

the changes in the prices of the optimizing firms relative to aggregate price in the economy at every period
with (red) and without (blue) trend inflation.

price (Pt) and visualizes that in a non-linear Calvo pricing model firms with many differ-

ent prices co-exist.19 Trend inflation adds a drift into the evolution of prices and, thus,

drives the distribution of optimal prices, P ∗t , further apart from the average price index

Pt. Aggregate output in the New Keynesian model is driven by the downward sloping

demand for product variety, Yt(i). Firms always adjust their supply to meet demand for

good i given their price, Pt(i). As only a fraction of firms are allowed to re-set their

prices optimally, each firm produces a different amount of goods. In particular, a frac-

tion 1− ζ is allowed to set its price; for the fraction ζ of non-optimizing firms for which

Pt(i) < P ∗t (respectively Pt(i) > P ∗t ) the produced output is Yt(i) > Y ∗t (respectively

Yt(i) < Y ∗t ).

Firms with low prices produce more than firms with high prices. In other words, the

dispersion of prices across products leads to Yt(i) ≶ Y ∗t which implies that resources

are not allocated optimally across firms. As shown in section 3, on the aggregate level

this introduces a wedge, S−1
t , between aggregate output and the amount of inputs,

Yt = S−1
t AtK

θN1−θ
t .20

19The cross-sectional distribution of prices is captured by the measure of price dispersion, St, equation
(12). The distribution of prices across time is linked to cross sectional distribution of prices because prices
optimally set in time t− 1, P ∗

t−1 are fixed at time t with probability 1− ζ.
20This wedge was emphasized in the literature by Ascari (2004), Ascari and Sbordone (2014)). Ascari

and Sbordone (2014) discuss the steady-state implications of trend inflation, whereas our focus is on the
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We disentangle the effects through which price dispersion amplifies the impact of macroe-

conomic shocks on prices and quantities into three channels: i) a marginal-cost chan-

nel, ii) a trend-inflation markup channel. The marginal cost channel shows how the

real rigidity (DRS) amplifies the impact of the fact that firms cannot reoptimize and are

stuck with prices from the past. The trend-inflation markup on the other hand high-

lights the effects of trend inflation on firms that can currently reoptimize and how they

act in setting their new price.

We should note that these two channels are already to some extent present in the liter-

ature. Our contribution is to outline the channels’ mechanism in the newly structured

exposition tailored to non-linear settings. The marginal-cost channel was already men-

tioned in Ascari (2004). The fact that price dispersion creates a inefficiency wedge be-

tween production inputs and aggregate output is stressed in King and Wolman (1996),

Schmitt-Grohe and Uribe (2006) and Ascari and Sbordone (2014). The upper bound

on inflation is discussed also in Ascari and Sbordone (2014) and from numerical per-

spective in a non-linear setting by Andreasen and Kronborg (2020). The trend inflation

mark-up channel is related to the discussion of the price adjustment gap in Ascari and

Sbordone (2014).

5.1. THE MARGINAL-COST CHANNEL

We show here that, in a world with trend inflation, the subset of firms which cannot

change their price and are stuck with a price from the past faces higher marginal costs,

which aggravates the impact of exogenous shocks on the economy. The wedge between

optimal marginal costs of a current price-resetter, MC∗t , and aggregate marginal costs,

MCt increases with trend inflation and the curvature of the production function (i.e.,

the degree of DRS). This wedge is present only in a non-linear model +solution.

A firm which can change its price in period t, will set its price equal to Pt(i) = P ∗t ,

which, from equation (3) and (4), implies that Y ∗t =
(
P ∗t
Pt

)−ε
Yt = AtK̄

θN
∗(1−θ)
t . This

expression defines labor demand of a price changing firm as

N∗t =

((
P ∗t
Pt

)−ε
Yt

AtK̄θ

) 1
1−θ

. (16)

Relating the optimal labor demand N∗t to aggregate labor demand Nt – which we ex-

dynamics, which is crucial for asset pricing.
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press from the aggregate production function – delivers

N∗t = φn,tNt where φn,t =

(
P ∗t
Pt

)− ε
1−θ

∫ 1

0

(
Pt(i)
Pt

) −ε
1−θ

di

, (17)

where φn,t can be interpreted as a measure of labor market inefficiency and is deter-

mined by the ratio of two price indexes.21

Using the wedge between labor demands, we can similarly describe the wedge between

marginal costs for the price re-setting, MC∗t = Wt

(1−θ)AtKθN∗−θt

, and the average firm,

MCt = St
Wt

(1−θ)(AtKθN−θt )
22, as

MC∗t = φmc,tMCt where φmc,t =

(
P ∗t
Pt

)− θε
1−θ

∫ 1

0

(
Pt(i)
Pt

) −ε
1−θ

di

. (18)

Average marginal costs are proportional to marginal costs of the price re-setting firm

and this proportion is determined by a similar ratio of price indices as in the case of the

labor market wedge.

In Appendix 2 we show that

φn, φmc


< 1 for πt > 0,

= 1 P̄ = P ∗t = Pt(i) = Pt,

> 1 for πt < 0,

(19)

where P̄ is the deterministic steady state of the price level. In a setting without trend
inflation (π̄ = 0), the ratios involving the price adjustment gap to price dispersion in

equations 17 and 18 will be smaller than one, φn,t < 1, φmc,t < 1, in states of the

economy with positive inflation realizations, πt > 0; equivalently it is larger than one,

φn,t > 1, φmc,t > 1 in states in which πt < 0. In a non-linear model solution the average

value of the wedges is smaller than 1, φn,t < 1, φmc,t < 1, even when inflation is centered

around zero at steady state. This comes from the fact that, in a non-linear world, when

resources are used unequally, this results in a welfare loss. Therefore, as on average

21We develop these results in the baseline setting with fixed capital, which is a case of decreasing
returns to scale (DRS). The appendix develops a similar set of results for the case of variable capital or
constant returns to scale (CRS).

22Using aggregate labor demand Nt =
[
StYt
AtKθ

] 1
1−θ

, we can calculate total costs, WtNt , from which,

using the definition of marginal costs, MCt = ∂WtNt
∂Yt

, the expression in the text follows.
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St > 1 and an average price adjustment gap of one, P ∗t
Pt

= 1, it follows φn,t, φmc,t < 1 on

average as well.

In the case of positive trend inflation, (π̄ > 0), the probability of realizations of defla-

tionary states of the world, πt < 0, decreases, because to reach an overall negative real-

ization of inflation the decrease in prices would need to exceed the positive steady-state

inflation value. Equivalently, the likelihood of observing states of nature where πt > 0

increases. For this reason, the values of φn,t and φmc,t will be less than one, φn,t < 1 and

φmc,t < 1, for most of the states of the world and accordingly also move the average

value of φn,t and φmc,t (more strongly) below one. The intuition is straightforward: in

periods with growing prices, firms that can react and adjust their prices will be able

to reflect the price growth in their profit-maximizing-price and consequently employ a

lower optimal amount of labor inputs and produce with lower marginal costs. The fact

that the average firm will produce at a higher marginal cost than the price optimizing

firm at time t adds an additional inefficiency in the production and amplifies the real

costs of price dispersion in the economy. Positive trend inflation thus amplifies the inef-

ficiency coming from price stickiness. As firms produce under different cost conditions

some of them are better equipped to accommodate exogenous (productivity) shocks.

The wedge between aggregate and optimal quantities, 1/φn,t and 1/φmc,t non-linearly

increases with decreasing-returns-to-scale, pinned down by parameter θ, and the elas-

ticity of substitution between good varieties, ε. The intuition is again straightforward:

to satisfy the higher demand for Yt(i), implied by Pt(i) < P ∗t , firms move along the

concave production function to the right. In the case of a linear production function the

increase in production is associated with no change in marginal costs. The presence of

ε in the wedge φn,t and φmc,t represents the amplification that monopolistic competition

adds to the inefficiency from price dispersion.

Furthermore, following from Y ∗t = AtK̄
θN∗1−θt =

(
P ∗t
Pt

)−ε
Yt, the ratio between output

of a price re-setting firm and aggregate output is determined by the price adjustment

gap which can be re-written using the aggregate price index as

Y ∗t = φo,tYt, where φo,t =

[
1− ζ (Πt)

ε−1

1− ζ

] ε
ε−1

. (20)

It follows that,

Yt


= Y ∗t for Πt = 1, φo,t = 1,

> Y ∗t for Πt > 1, φo,t < 1,

< Y ∗t for Πt < 1, φo,t > 1

(21)
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In the economy with trend inflation where, on average, Πt > 1, the average output is

higher than optimal output, Y ∗t < Yt . As prices are on average too low the economy

produces on average too much. A negative productivity shock in this situation has

therefore a much stronger impact on macroeconomic quantities. Firms, in the non-

linear world with Calvo prices and trend inflation, need to meet the demand for goods

and on average overproduce. If in this situation their production technology becomes,

as a result of negative TFP shock, even less efficient without the possibility to adjust

prices, the only option for accommodation of these adverse conditions is adjustment

in quantities. It is this shock accommodation through quantities which leads to large

model volatility. The next sub-section discusses the behavior of the subset of firms given

the chance to adjust its price. Overproducing firms, given the chance to change their

price, will need to adjust their, on average, low prices by more. This jump in adjustment

leads to more volatile inflation in the economy.

5.2. TREND-INFLATION MARKUP CHANNEL

The presence of trend inflation leads firms to set their price at an additional markup

over (current and future expected) marginal costs, which we denote the trend-inflation

markup: a markup implied by sticky prices and elevated by trend inflation that occurs

over and above the traditional markup from monopolistic competition. Trend infla-

tion enters the firm’s price decision problem, and therefore the first order condition

for the optimal price represents another important channel. The price re-setting firm

is forward-looking, it can foresee trend inflation and will therefore, on average, set its

price above the aggregate price level (which includes non-resetting firms’ prices from

the past), P ∗t > Pt. It is because the optimal price has to equate to the present value of

future marginal revenues with marginal costs,

∞∑
k=0

ζkEtQt,t+kΠ
ε−1
t+kYt+k

(
P ∗t
Pt

)1+ εθ
1−θ

=
ε

ε− 1

∞∑
k=0

ζkEtQt,t+kΠ
ε

1−θ
t+kYt+kMCt+k(i). (22)

The trend growth in prices increases both firms’ costs of production and revenues from

output sold. Nonetheless, nominal marginal costs (the expression in the infinite sum on

the right hand side of equation (22)) grow at a faster rate than nominal revenues (the

left hand side of equation (22)).23 So, to keep the equality of marginal revenues with

23As Π goes up, the right hand side of equation (22) grows faster – at rate Π
ε

1−θ
t+k – than the left hand

side – which grows by Πε−1
t+k.
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marginal cost in present value terms, the price setting firm must set P ∗t above Pt.24 The

difference between the rate of growth in marginal cost and marginal revenue shapes

the firm’s markup over (present and future) marginal costs. Equation (23) defines the

price adjustment gap, which depends on the weighted average of the firm’s current and

expected future real marginal costs:

(
P ∗t
Pt

)1+ εθ
1−θ

=
ε

ε− 1

∞∑
k=0

Υt+kMCt+k(i), where Υt+k =
ζkEtQt,t+kΠ

ε
1−θ
t+kYt+k∑∞

k=0 ζ
kEtQt,t+kΠ

ε−1
t+kYt+k

.

(23)

Ascari and Sbordone (2014) show that the mark-up, Υt+k, increases with inflation and,

thus, as trend inflation increases, the firm’s trend-inflation markup amplifies the distor-

tion implied by monopolistic competition. The rise in Υt+k means that firms put more

weight on marginal costs far in the future compared to current marginal costs25.

5.3. PRICE-INFLATION SPIRAL IN THE ECONOMY WITH TREND

INFLATION

We shortly elaborate on the economic intuition behind the amplified effect of price-

inflation spiral in the presence of trend inflation. The price-inflation spiral is best un-

derstood from the non-linear first-order difference equation governing the dynamics of

price dispersion, which we presented in equation (14). High inflation, Πt, at time t,

leads to high dispersion of prices across product varieties, St, as only some firms can

adjust their prices. The high dispersion of prices, St, in turn calls for a strong adjustment

in prices and thus high inflation in the next period, Πt+1. These reinforcing dynamics

continue, and hence start the price-inflation spiral.

The price inflation-spiral shows that inflation depends on the already prevailing level

of price dispersion. If prices are widely dispersed in the economy the dispersion will

become self-reinforcing and lead to an inflation spiral. The higher the steady state of

inflation the higher is the probability that exogenous inflationary shocks will trigger

this price-inflation spiral. Trend inflation spreads out the distribution of prices as those

firms which cannot change their low prices are left behind further and further from the

optimal price as the price level grows. When these firms can finally change their price

24Note that the trend-inflation markup channel is amplified through the parameter determining the
strength of DRS, θ, which further widens the gap between costs and revenues.

25Ascari and Sbordone (2014) shows that overly forward looking agents de-anchor inflation expecta-
tions and decrease the determinacy region.
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they create large inflation and, in fact, instead of decreasing the dispersion of prices they

further contribute to the widening in the distribution of prices if their price adjustment

is too big.

6. AN APPLICATION TO MACRO-FINANCE

6.1. GLOBALLY SOLVED MODELS

The inflation threshold determining the stability region is a global property of the model

with Calvo pricing independent of the solution method applied to the model. There

are several papers in the (optimal) monetary policy literature using the framework we

describe solved by projection methods (i.e. Anderson, Kim, and Yun (2010), Leith and

Liu (2014) and Miao and Ngo (2019)). None of these three papers report issues with

stability. The model structure of these papers is very similar. Whereas Anderson, Kim,

and Yun (2010) and Leith and Liu (2014) solve for optimal monetary policy Miao and

Ngo (2019) use a calibrated Taylor rule.

Figure 6: Determinacy vs. Stability region in Miao and Ngo (2019)
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Note: The left panel shows stability region based on zero trend inflation. The stability region denotes the
region where St−1 < St over the 1st to 99th percentile of the simulated bivariate distribution state variables,
denoted P1,99(S) and P1,99(A). The region 95 % Conf. does the same for P5,95(S) and P5,95(A). The
diamond indicates the model calibration by Miao and Ngo (2021). The right panel plots stability region with
4% annual trend inflation.

We replicate these papers and demonstrate on the example of Miao and Ngo (2019)

in Figure 6a that the reason for the stability of global solution is that these models are

calibrated to be in the stability region. Nevertheless, setting the coefficient on output

gap only slightly higher would set the model in Figure 6a already to the explosive path.

Undesired Consequences of Calvo Pricing in a Non-linear World
NBS Working Paper | 1/2023

36



By assuming non-zero trend inflation in figure 6b the stability region26 narrows and the

calibration of Miao and Ngo (2019) does fall outside the stability region despite the

linear solution being still determined.

6.2. MACROFINANCE

We now present an application that illustrates that the mechanism described in the

previous sections is relevant and quantitatively pronounced in widely used modeling

framework of term structure of interest rates. We adopt as our example application

the model of Rudebusch and Swanson (2012)27 (RS), which has become the state-of-

the-art model in the macro asset pricing literature. We choose this model because it

represents a central model in the literature which is doomed to rely on non-linear so-

lution methods and Calvo pricing. In particular, the RS model explains the economics

of risk premia and precautionary saving effects which are inherently non-linear phe-

nomena. In addition, price dispersion implied by Calvo pricing has been stressed in the

macro asset pricing literature as an important driver explaining risk premia. In a New

Keynesian model with Calvo prices, Swanson (2015) uses the price dispersion index

as a source of conditional volatility in consumption to generate sizable term premia in

bond prices. Andreasen, Fernandez-Villaverde, and Rubio-Ramirez (2018) argue, in a

mid-scale model with Calvo contracts, that their model can match the volatility of term

premia by using trend inflation to amplify the non-linearities in the price dispersion

index.

Price dispersion therefore plays an important role in the macro-asset pricing literature

to explain the behavior of risk. A negative TFP shock received at the time with high

dispersion in prices might lead to a price-inflation spiral which in turn leads to high

conditional volatility of the stochastic discount factor and, thus, a high risk premium.

The literature on asset pricing in New Keynesian models with Calvo contracts resorts

dominantly to third-order approximate solutions to the policy functions. The third-order

approximation is justified by the fact that only third and higher-order approximations

can capture positive and volatile risk premia (i.e. van Binsbergen, Fernandez-Villaverde,

Koijen, and Rubio-Ramirez (2012) and Andreasen, Fernandez-Villaverde, and Rubio-

Ramirez (2018).

Figure 7 shows the stability and determinacy region for RS model. The left panel 7a

26Ascari and Ropele (2009) shows that trend inflation narrows the determinacy region.
27In the interest of space we do not review here the model of Rudebusch and Swanson (2012) and

refer the reader to Appendix C for the summary of equilibrium conditions and to the original article. The
online appendix on authors web-page provides details on the model derivation.
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Figure 7: Determinacy vs. Stability region in Rudebusch and Swanson (2012)
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Note: The left panel shows stability region based on zero trend inflation. The stability region denotes the
region where St−1 < St over the 1st to 99th percentile of the simulated bivariate distribution state variables.,
denoted P1,99(S) and P1,99(A). The region 95 % Conf. does the same for P5,95(S) and P5,95(A). The
diamond indicates the calibration by Rudebusch and Swanson (2012). The right panel plots stability region
with 1.6% annual trend inflation.

show the original calibration in Table 3 of RS. It shows that the model is calibrated on

the boarder of the stability region and that in the simulation 5 percent of observations

feature St−1 > St. The right panel 7b demonstrates that already for small inflation

of 1.6% annually the RS benchmark calibration features unanchored inflation expecta-

tions and the model feature explosive moments despite the fact that it is lying in the

determinacy region.

Table 4 follows RS and reports the moments of macro and finance variables, where

NTP (40) denotes the 10-year nominal term premium, and i(40) denotes the 10-year bond

yield. In addition to RS we also report, consistent with Table 2, the statistics describing

the loss due to price dispersion, ∆t, and the statistics on the violations of bounds.

The first column of Table 4 provides targeted empirical moments. The subsequent

columns are model-based unconditional moments, calculated from third-order approxi-

mated and pruned model simulations of various RS model versions, where we highlight

modeling features and channels discussed previously. Column RS gives simulated mo-

ments from the original baseline RS model (with zero trend inflation), using the RS

best fit calibration (which we summarize in Table 7) from Table 3 of their paper. All the

remaining columns assume positive annual trend inflation, π̄ = 1.6%.

Column ’RS with trend inflation’ shows that as soon we add even moderate trend in-

flation into the RS model the simulation is becomes unstable; both lower (51.5% of

periods) and upper bound (7.46% of periods) on St are violated and for instance, the

standard deviation of inflation reaches an enormous 32.92%. Column ’RS with linear-
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in-labor’ production function highlights the quantitative impact of the marginal cost

channel driven by the degree of real rigidity in the model. Both macro and finance mo-

ments show that the absence of the real rigidity (by using a linear-in-labor production

function) significantly tames the model dynamics. For instance, the volatility of con-

sumption drops from 10.59 to 0.54, and the model also rarely violates the bounds on

St.

Column ’RS with 2 × φπ ’ shows that doubling the weight on inflation in the Taylor

rule helps to anchor inflation expectations which lowers the trend inflation markup.

The increased reaction of the central bank to inflation leads to lower price changes of

optimizing firms. As price-resetting firms adjust their prices by smaller magnitudes the

trend inflation markup drops. We see from this column that, although the dynamics of

macro variables are much improved and the model is able to generate surprisingly large

nominal term premia (NTP (40) = 1.66) without compromising the macro moments28,

the numerical properties related to price dispersion remain compromised (45.68% of

periods below the bound on St) and the match of the dynamics of output loss implied by

price dispersion remains poor (in some periods up to 26.14% loss of quarterly output).

Column ’RS with indexation’ substantially decreases the occurrence of the price-inflation

spiral, by introducing full inflation indexation into the model with trend inflation. In

this case the upper bound on inflation is violated only in 0.11% of periods as opposed

to 7.46% and the model dynamics is comparable to original RS model. We identify

indexation therefore as one of the modeling remedies attenuating the amplification ef-

fects of trend inflation in non-linear Calvo settings. In the last two columns we report

the most common alternative pricing mechanisms found in the literature: Rotemberg

quadratic price adjustment costs and the staggered Taylor pricing mechanisms. Results

in these columns show that these alternative methods of modeling nominal rigidities

match equally well both the macro and finance stylized facts, but do not generate the

counterfactual size of the cost of inflation.

We therefore confirm the results from the analysis conducted in the standard New Key-

nesian DSGE model. Price dispersion drives both the finance and macroeconomic fluc-

tuation. Anchoring inflation expectations, destabilized by the price dispersion inflation

spiral, is a necessary condition for accuracy of perturbation solution and existence of

global solution.

28This has been shown to be challenging in the literature, see, e.g., Rudenbusch and Swanson (2008).
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7. CONCLUDING REMARKS

Applications in modern macroeconomics increasingly require non-linear solution meth-

ods, among them models with asset pricing implications. Our paper studies the conse-

quences of the widely used Calvo pricing mechanism in a non-linear world. We show,

in a standard New Keynesian and later in a workhorse macro-finance model, that in

a non-linear setting a price dispersion driven inflation spiral governs business cycle

fluctuations. This provides a new challenge for the central bank to anchor inflation ex-

pectations. We introduce the concept of the stability region as a non-linear counterpart

to the determinacy region. The price-inflation spiral strongly compromises model dy-

namics of all other variables and the non-linear model solution outside of the stability

region implies counterfactual second moments. In addition, the explosive character of

price dispersion implies that no global solution can be computed outside of the stability

region.

Perturbation methods with pruning allow us to solve the model even outside of the

stability region. This is, however, at the cost of large approximation errors. Should

this finding imply that macroeconomic models abstract from models with Calvo pric-

ing altogether? In our opinion not necessarily. One can understand the Calvo pricing

mechanism purely as a modeling device of nominal rigidities without having a solid mi-

croeconomic foundation, which serves its purpose well in a linearized setting. As long as

the model delivers realistic predictions (matches moments and impulse response func-

tions) about the economy under scrutiny, it can be useful to explain observable data.

A vast amount of literature proved that in linearized models Calvo pricing works well

to explain second moments and match impulse responses to those found in VAR esti-

mates. For these reasons, we believe that Calvo pricing, even if subject to substantial

approximation errors and not having support in microeconomic evidence, is useful in

linear models. Using Calvo pricing in non-linear setting, however, delivers, in many

model setups, a counterfactual cost of inflation and extremely large dispersion of prices

in the economy which are not in line with observed evidence. In non-linear Calvo pric-

ing models with trend inflation empirically estimated Taylor rule coefficients are not

sufficient to stabilize the economy.
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Table 4: Empirical and Model-Based Unconditional Moments

Unconditional US data RS RS with RS with RS with RS RS RS
Moment 1961-2007 replication trend linear Nt(i) 2× φπ indexation Rotemberg Taylor

inflation in PF on πt pricing pricing
π̄ = 0 π̄ > 0 π̄ > 0 π̄ > 0 π̄ > 0 π̄ > 0 π̄ > 0

Moments of macroeconomic variables
std(C) 0.83 0.88 10.59 0.54 1.20 0.89 0.50 0.70
std(N) 1.71 2.51 30.01 1.42 2.91 2.50 1.50 1.82
std(i) 2.71 3.41 38.69 2.49 2.97 3.43 2.13 3.07
std(π) 2.52 3.01 32.92 2.35 1.98 2.98 2.14 2.78

Moments of finance variables
std(i(40)) 2.41 3.94 4.79 5.42 4.16 5.24 4.03 4.34

mean(NTP (40)) ) 1.06 0.91 3.68 0.65 1.66 1.08 0.84 1.47
std(NTP (40)) 0.54 0.42 7.04 0.11 0.98 0.55 0.36 0.13

Behavior of price dispersion and implied output loss, ∆t = 100 (1− S−1)
violation of πt ≤ πupper - 0.05 7.46 0.00 0.06 0.11 0.00 0.00

violation of S ≥ 1 - 8.77 51.50 0.08 45.68 12.95 0.00 19.10
mean(∆) 0.4 0.55 -1.24 0.29 0.45 0.52 0.76 0.10
std(∆) - 0.99 61.87 0.35 1.73 1.03 0.88 0.15
max(∆) - 17.45 98.55 4.94 26.14 41.00 0.00 4.25
min(∆) - -7.48 -6227.45 -0.42 -14.80 -7.17 0.00 -0.12

Note: All variables are quarterly values expressed in percent. Inflation, interest rates and the term premium are expressed at an annual rate. All models feature
trend inflation, π̄ = 1.6%, but the RS replication. The column with firm i’s linear-in-labor production function shows the quantitative effect of the marginal cost
channel. The column with 2 × φπ shows the effect of the reduced trend markup channel. The column with indexation shows the effects of decreased occurrences of
the price-inflation spiral. The last two columns show that alternative pricing mechanism do a better job at matching stylized facts.
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A. GLOBAL APPROXIMATION METHOD

The obtain a global solution of our benchmark model we adopt a time iteration method

as developed by Coleman (1990, 1991), where we solve for the approximate non-linear

policy functions in an iterative algorithm. The non-linear model equations are summa-

rized in Table 5. Below we briefly outline the steps of the algorithm used:

• In the following, denote t + 1 variables and non-predetermined state variables

at time t with a prime, e.g. C = Ct, C ′ = Ct+1, S ′ = St, S = St−1, etc. we

construct a two-dimensional grid over the model’s state variables at time t, that

is, over S = St−1, A = At consisting of nsnA grid points. The grid in dimension of

S ranges from 1 to Smax, where we obtain Smax from the relevant region of price

dispersion that is traveled in a simulation of the third-order perturbation solution.

The gridpoints in dimension of A are obtained by discretizing the continuous AR

process with the Rouwenhorst (1995) method, which, for persistent processes, has

been shown to yield more accurate approximations than, e.g., the conventional

discretization by Tauchen and Hussey (1991) (c.f. Kopecky and Suen (2010)).

The number of gridpoints is chosen to be ns = 61 and nA = 11.

• Set counter equal to 1. Using the perturbation solution make initial guesses on the

consumption policy, inflation policy, and the policy functions of the two auxiliary

variables in the Calvo pricing block.

• Having guesses C (S,A), Π (S,A), K (S,A), F (S,A) in hand, we can write the

model’s conditional expectations, CEEE =
{
C−ϕt+1

Πt+1

}
, CEK =

{
C−ϕt+1Π

ε
1−θ
t+1Kt+1

}
and

CEF =
{
C−ϕt+1Πε−1

t+1Ft+1

}
, as

CEEE (S ′, A) =
∑
A′

π (A′|A)
[C ′ (S ′, A′)]−ϕ

Π′ (S ′, A′)
, (24)

CEK (S ′, A) =
∑
A′

π (A′|A) [C ′ (S ′, A′)]
−ϕ

[Π′ (S ′, A′)]
ε

1−θ K ′ (S ′, A′) , (25)

CEF (S ′, A) =
∑
A′

π (A′|A) [C ′ (S ′, A′)]
−ϕ

[Π′ (S ′, A′)]
ε−1

F ′ (S ′, A′) , (26)

where we integrate out the expectations over futureA′ using the Markov transition

matrix π (A′|A).

• Using the guesses for the conditional expectations and given the time t values of

grid variables, (S,A), the model’s endogenous variables S ′, C, N , (1 + it), Π, p∗t ,

K, F , W , MC, Y can be computed by solving the system given in Table 5 with a
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Table 5: System of model equations, baseline NK model

(NK1): 1 = βEt

{(
Ct+1

Ct

)−ϕ
(1+it)
Πt+1

}
(NK2): Kt = ε

ε−1
MCtYt + βζ

(
Ct+1

Ct

)−ϕ
Π

ε
1−θ
t+1Kt+1

(NK3): Ft = Yt + βζ
(
Ct+1

Ct

)−ϕ
Πε−1
t+1Ft+1

(NK4): χ0(1−Nt)
−χCϕ

t = Wt

(NK5): (p∗t )
1+ θε

1−θ = Kt
Ft

(NK6): MCt = 1
1−θK

θ
1−θ Wt

At

(
Yt
At

) θ
1−θ

(NK7): StYt = AtK̄
θ(Nt)

1−θ

(NK8): S
1

1−θ
t = (1− ζ) (p∗t )

−ε
1−θ + ζ(Πt)

ε
1−θS

1
1−θ
t−1

(NK9): Π1−ε
t = (1− ζ) (p∗tΠt)

1−ε + ζ
(NK10): Yt = Ct + I +G

(NK11):
(

1+it
1+i

)
=
(

Πt
Π

)φπ (Yt
Y

)φY
(NK12): logAt = ρA logAt−1 + σAεA,t

non-linear equations solver, at each gridpoint (S,A). Price dispersion next period,

S ′, is part of the variables that need to be solved for, and is also the argument in

evaluating expressions 24 at value S ′. We use linear interpolation (extrapolation)

when evaluating expressions CEEE (S ′, A), CEK (S ′, A), and CEF (S ′, A) at value

S ′ off of (outside of) the exogenously specified S-grid.

• Having in hand solutions for C (S,A), Π (S,A), K (S,A), F (S,A) provides us with

new policy function guesses to compute an updated guess of the conditional ex-

pectation terms, 24. We set counter = counter+1 and return to step 3. The above

steps are repeated until convergence is achieved. The convergence criterium is

specified as the maximum absolute value of the difference from policy function

guesses in two consecutive iterations to be smaller than 1e-6.

A.1. NO GLOBAL SOLUTION OUTSIDE THE STABILITY RE-

GION

The reason why no global solution can be obtained whenever the model falls outside

of the stability region is that for some values of the exogenous state At, the relevant

state space in the St−1 dimension becomes unbounded, so that no specified grid over

St−1 is large enough. In particular, this is the case for low values of the exogenous

state At which imply (high) inflation rates that exceed the level of threshold inflation,
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i.e., Πt > Πthreshold
t , so that (as explained in section 3.3) St > St−1. This means that

whatever maximum value of the St−1-grid one takes, the value of St falls outside of the

specified grid. Section 3.2 discussed the existence of an upper bound, so that one may

be tempted to think that it could be of guidance in specifying a maximum grid in the

St−1 dimension. However, unfortunately, the upper bound is solely an upper bound on

inflation, Πupper, and the fact that Πupper > Πthreshold
t continues to imply that because

St > St−1 no ’upper bound’ on price dispersion can be specified. In the practise of

the time iteration algorithm described above, this problem implies that the algorithm is

unable to converge. This is because policy function guesses CEEE (S ′, A), CEK (S ′, A)

and CEF (S ′, A) need to be evaluated at S ′, when solving the exact non-linear system

of model equations; and S ′ falls beyond the maximum value of S and thus outside the

prespecified (S-A) grid. As a result, the very nature that price dispersion is explosive in

some regions (St > St−1), implies that a current guess for the policy function needs to be

evaluated outside of the grid over which it is computed, i.e. one needs to extrapolate.

Because extrapolation is likely to be inexact (particularly for this region of high non-

linearity), convergence cannot be achieved. As explained, extending the grid is not an

option to resolve these issues.

We have experimented with a number of alternatives to obtain a globally approximated

model solution. This includes turning to a version of our time iteration/ policy func-

tion iteration algorithm that adopts an endogenous grid, specifying the grid over St
and At and solving for St−1 as part of the variables in the non-linear equations solver

step. Alternatively we have also explored other, alternative global solution methods.

As a robustness check we have explored using a projection method (Chebyshev colloca-

tion) as in, e.g., Anderson, Kim and Yun (2010). Similarly, we explored the ’extended

perturbation method’ of Andreasen and Kronborg (2017). Whenever the solution falls

into the stability region, all these methods imply almost identical policy functions and

simulated model moments are virtually identical; a global solution for parameterization

cases falling outside of the stability region can, however, not be obtained.

B. POLICY FUNCTIONS OF THE SIMPLE

NK MODEL

This section deepens the intuition for unstable price dispersion dynamics by looking at

the policy function plots for the parameterization cases A1-C2 from section 4. Policy

functions in our simple NK example model depend on two state variables, on endoge-

nous state St−1, and on exogenous state At. Before doing so, Figure 8, however, plots
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price dispersion, St, as a function of both arguments it depends on according to its true

non-linear law of motion, equation (12), which is past price dispersion, St−1 ≥ 1, and

on inflation, Πt. In a model solution Πt is itself a function of state variables St−1,At,

so that there is a correspondence between the plot of price dispersion as a function of

St−1,Πt and as a function of St−1, At. The advantage of the former is that it is not de-

pendent on a model solution; Figure 8 here does not need to rely on any approximation

method at all: what is plotted is the true non-linear dynamics, as given by the non-linear

law of motion of price dispersion.29 It can clearly be seen that, for a large region of Πt

price dispersion is an increasing function of past price dispersion, so that dynamics are

explosive, confirming that unstable dynamics are a true feature of the model. We know

from section 3 that this is the case whenever Πt > Πthreshold, then St > St−1. For easier

visibility this region of St is highlighted in red.

Figure 8: Price Dispersion Dynamics According to the True Non-linear Law of Motion

Note: Price dispersion St plotted as implied by the exact non-linear law of motion (equation (14)) in depen-
dance of St−1 and Πt. The red part of the surface indicates the region where price dispersion dynamics are
unstable, i.e. where Πt > Πthreshold and St > St−1.

Figure 9 presents policy function plots for price dispersion, St, for parameterization

cases A1-A3 (benchmark scenario), for cases B1-B2 (scenarios with positive trend infla-

tion) and cases C1-C2 (scenarios with zero trend inflation and no decreasing returns to

scale), respectively. Policy functions for St, are now plotted as a function of the model’s

fundamental state variables, which are past price dispersion, St−1, and total factor tech-

nology, At. Also included in the panels is a transparent surface which plots the S-Grid

on itself, i.e. providing a surface with slope equal to one in the St−1-dimension. Similar

to Figure 8 regions with increasing price dispersion dynamics, St > St−1, are colored

in red. As discussed in the main text, scenarios A1, B1, and C1, are all parameteriza-

29The true non-linear law of motion depends on three model parameters, θ, ε, and ζ. These are chosen
as in the benchmark parameterization (case A).
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tion examples that fall well into the stability region. The policy function plots deliver

the same insight: policy function St falls below the transparent surface indicating the

instability threshold, thus price dispersion dynamics are stable over the entire relevant

state space to which price dispersion travels. Also, we observe that the policy function

obtained from the third order solution is virtually identical to the one obtained from

the global solution, mirroring the simulation results in the main text (section 4). This

drastically changes when moving to parameterization scenarios A2-A3, B2, or C2, for

which we know that they lie outside of the stability region. Here, we observe that –

highlighted in red– price dispersion dynamics are unstable, St > St−1, for the region of

the state space where At is low (e.g., resulting from a negative supply shock), which

is associated with high levels of inflation, leading to high price dispersion, and vice

versa (the price-inflation spiral). The dynamic behavior visualized in the policy func-

tion plots is Figure reminiscent of the unstable region highlighted in 8, the difference

being that the policy function plots recognize that inflation is itself a function of the

model’s fundamental state variables, St−1 and At. For parameterization cases A2-A3,

B2, and C2, because of the wildly unstable price dispersion dynamics no global solution

can be obtained, as explained in section A.

C. RUDEBUSCH AND SWANSON (RS) MODEL

This appendix gives a summary of the equilibrium conditions of Rudebusch and Swan-

son (2012). Table 6 summarizes the system of equations of the Rudebusch Swanson

model in terms of stationary allocations and real (relative) prices (i.e., in term of de-

trended and deflated variables, denoted by lowercase variables) defined as ct = Ct
Zt

,

yt = Yt
Zt

, Πt = Pt
Pt−1

, wt = Wt

PtZt
, p∗t =

P ∗t (i)

Pt
, mct (i) = MCt(i)

Pt
, yt = Yt

Zt
, µt = Zt

Zt−1
. The

best fit calibration of the RS model based on their Table 3 is summarized in Table 7. In

this setting, model dynamics are driven by three types of shocks, stationary technology

shocks, government spending shocks, and inflation target shocks (in particular, there

are no trend productivity shocks, so that µt = Zt
Zt−1

= µ is constant).

C.1. BOND PRICING

The price of a default-free n-period zero coupon bond that pays $1 at maturity can be

described recursively as:

p
(n)
t = Et{Qt,t+1p

(n−1)
t+1 }

where Qt,t+1 is the stochastic discount factor; p(n)
t denotes the price of the bond at time
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Figure 9: Policy functions of price dispersion for cases A1-A3, B1-B2, and C1-C2

A1, 3rd.order A1, global A2, 3rd order

A3, 3rd order

B1, 3rd.order B1, global B2, 3rd order

C1, 3rd.order C1, global C2, 3rd order

Note: Policy functions for price dispersion St for scenarios A1-A3, B1-B2, and C1-C2. Policy function St is
plotted in dependance of state variables St−1 and At. The transparent surface included plots the St−1 grid
on itself for each given value of At, i.e. having slope 1 in St−1 dimension. The red part of the policy function
surface indicates the region where price dispersion dynamics are unstable, i.e. where Πt > Πthreshold and
St > St−1.
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Table 6: System of model equations, Rudebusch Swanson model

(RS1): Vt =
c1−ϕt

1−ϕ + χ0
(1−Nt)1−χ

1−χ + β(Et[(Vt+1µ
1−γ
t+1 )

1−α
])

1
1−α

(RS2): Qt−1,t = µ−γt

(
(Vtµ

1−γ
t )

[Et−1(Vtµ
1−γ
t )1−α]

1
1−α

)−α (
ct
ct−1

)−ϕ
(RS3): χ0(1−Nt)

−χcϕt = wt

(RS4): 1 = βEt

{
Qt,t+1

(1+it)
Πt+1

}
(RS5): (p∗t )

1+ θε
1−θ = aux1t

aux2t

(RS6): aux1t = ε
ε−1

mctyt + βζQt,t+1Π
ε

1−θ
t+1 aux1t+1

(RS7): aux2t = yt + βζQt,t+1Πε−1
t+1aux2t+1

(RS8): StYt = AtK̄
θ(Nt)

1−θ

(RS9): S
1

1−θ
t = (1− ζ) (p∗t )

−ε
1−θ + ζ(Πt)

ε
1−θS

1
1−θ
t−1

(RS10): Π1−ε
t = (1− ζ) (p∗tΠt)

1−ε + ζ

(RS11): MCt = 1
1−θK

θ
1−θ Wt

At

(
yt
At

) θ
1−θ

(RS12): yt = ct + I + gt

(RS13): 4it = 4ρiit−1 + (1− ρi)
[
4(̄i− π̄) + (πavgt ) + φπ(4(πavgt )− (π∗t )) + φY

(
µtYt
µ̄Ȳ
− 1
)]

(RS14): π∗t = (1− ρπ∗) 4πavgt + ρπ∗π
∗
t−1 + ζπ∗ (4πavgt − π∗t ) + σπ∗επ∗,t

(RS15): πavgt = θπavgπ
avg
t−1 + (1− θπavg) πt

(RS16): logAt = ρA logAt−1 + σAεA,t
(RS17): log(gt/ḡ) = ρG log(gt−1/ḡ) + εGt
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t with maturity n, and p(0)
t ≡ 1, i.e. the time-t price of $1 delivered at time t is $1.

The price of a bond can be decomposed into the risk-neutral price and a term premium.

The risk-neutral bond price, p̂(n)
t , is defined through the expectations hypothesis of the

term structure:

p̂
(n)
t = e−itEtp̂

(n−1)
t+1 NTPn,t = i

(n)
t −

1

n

n−1∑
j=0

Et[it+j] (27)

where the bond price is discounted by one period rate, it. The price of bond reflects,

in this case, expectations about inflation and economic activity but abstracts from the

uncertainty surrounding the expectations30. The continuously compounded yield to

maturity of the n-period zero-coupon bond can be written as i(n)
t = − 1

n
log p

(n)
t , (see

for instance Cochrane (2001)). The term premium, NTPn,t is defined as the difference

between the yield expected by the risk-averse investor (i(n)
t ) minus the yield awaited by

the risk-neutral investor (ı̂(n)
t = 1

n

∑n−1
j=0 Et[it+j]).

C.2. AGGREGATION

Here we describe in detail the aggregation across the i-firms in case of decreasing return

to scale (i.e., the model version with fixed capital, as in the original model specification

of RS), and constant return to scale production function (i.e., with variable capital).

C.2.1 Aggregate Price Index

The aggregate price index Pt =
[∫ 1

0
P 1−ε
t (i)di

] 1
1−ε

can be written using the Calvo result

as,

P ∗t
Pt

=

[
1− ζ (Πt)

ε−1

1− ζ

] 1
1−ε

, (28)

C.2.2 Aggregation for DRS

The production function of intermediate firm i is given by Yt(i) = AtK
θN1−θ

t (i). Using

this, plug in for Yt(i) into the demand for variety i, equation 3, solve for Nt(i) and

30This can be understood as the bond price of a 10-year bond expected by the so-called risk-neutral
investor who is rolling over a one-period investment for 10 years.
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integrate over all varieties i. Since workers are all the same the aggregation of hours

worked is Nt =
∫ 1

0
Nt(i)di. Aggregation thus delivers,

Nt =

(
Yt

AtKθ

) 1
1−θ
∫ 1

0

(
Pt(i)

Pt

)− ε
1−θ

di, (29)

which can be re-written as

Yt = S−1
t AtK

θ
tN

1−θ
t , (30)

where variable S
1

1−θ
t =

∫ 1

0

(
Pt(i)
Pt

) −ε
1−θ

di defines price dispersion.

C.2.3 Re-setting firm vs. aggregate quantities for DRS

The demand function at time t+ k for the firm re-setting its price at time t is given by,

Y ∗t+k = At+kK̄
θN
∗(1−θ)
t+k =

(
P ∗t
Pt+k

)−ε
Yt+k, (31)

where P ∗t is the optimal price of firm resetting its price at time t for the horizon k. Factor

demand of the price re-setting firm, N∗t is,

N∗t+k =

((
P ∗t
Pt+k

)−ε
Yt+k

At+kK̄θ

) 1
1−θ

. (32)

The ratio of the price re-setting (equation (32)) and the aggregate firm’s factor demands

(29)), expressed in terms of time t quantities, is given by

N∗t
Nt

=

((
P ∗t
Pt

)−ε
Yt

AtK̄θ

) 1
1−θ

[
YtSt
AtKθ

] 1
1−θ

=

(
P ∗t
Pt

)− ε
1−θ

S
1

1−θ
t

=

(
P ∗t
Pt

)− ε
1−θ[∫ 1

0

(
Pt(i)
Pt

) −ε
1−θ

di

] . (33)

An analogous ratio can be derived for aggregate marginal cost and marginal costs of the

price resetting firm. Marginal costs for the price resetting firm are,

MC∗t =
Wt

(1− θ)AtKθN−θt

N−θt
N∗−θt

, (34)
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Aggregate marginal cost come from ∂WtNt
∂Yt

and, using Nt =
[

Yt
AtKθ

] 1
1−θ

S
1

1−θ
t , delivers,

MCt
St

=
Wt

(1− θ)
(
AtKθN−θt

) . (35)

Plugging equation (33) into (34) and rearranging delivers,

MC∗t = MCt

(
P ∗t
Pt

)− θε
1−θ

S
1

1−θ
t

(36)

C.2.4 Aggregation for CRS

For the case of a constant returns to scale production function, where capital is variable,

the cost minimization problem is given by

min
Nt(i)

WtNt(i) +Rk
tKt +MCr

t (i)
[
Yt(i)− AtKt(i)

θN1−θ
t (i)

]
, (37)

subject to production function, Yt(i) = AtKt(i)
θN1−θ

t (i), and where MCt(i) is the multi-

plier associated with the constraint.

The firm’s demands for labor and capital are, respectively,

Wt = MCr
t (i)(1− θ)AtKt(i)

θN−θt , (38)

Rk
t = MCr

t (i)AtθKt(i)
θ−1N1−θ

t (i), (39)

Plugging the factor demands into the definition of total costs, TCt(i) = WtNt(i) +

Rk
tKt(i) delivers,

TCt(i) = [MCr
t (i)]Yt(i). (40)

Marginal costs are defined as a change in total cost when output changes, dTCt(i)
dYt(i)

=

MCr
t (i), which shows that the Lagrange multiplier equals real marginal costs. From the

ratio of equation (38) and equation (39) we get that,

1− θ
θ

=
WtNt(i)

Rk
tKt(i)

. (41)

Since factor prices are common for all the firms, the ratio of 1−θ
θ

Rt
Wt

= Nt(i)
Kt(i)

is the same
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for all firms. Plugging factor demands from equation (38) and equation (39) into pro-

duction function of firm i we get Yt(i) = At

(
MCrt (i)θYt(i)

Rkt

)θ (
MCrt (i)(1−θ)Yt(i)

Wt

)1−θ
which

after expressing for MCr
t delivers,

MCr
t =

∫ 1

0

MCr
t (i)di =

(
Rk
t

)θ
W 1−θ
t

Atθθ(1− θ)1−θ , (42)

Marginal costs are therefore the same for all firms, both of price setters and firms with

staggered prices.

C.2.5 Re-setting firm vs. aggregate quantities for CRS

From the relationship Y ∗t = AtK
∗θ
t N

∗1−θ
t =

(
P ∗t
Pt

)−ε
Yt we can express for amount of

labor input hired by the price re-setting firm as

N∗t =

(
P ∗t
Pt

)− ε
1−θ[∫ 1

0

(
Pt(i)
Pt

) −ε
1−θ

di

] (Kt

K∗t

) θ
1−θ

Nt. (43)

The ratio of capital demand equations for the price resetting firm and the aggregate

firm delivers,
Kt

K∗t
=

Yt
Y ∗t

, (44)

We have shown that Y ∗t ≤ Yt in the presence of trend inflation. Therefore, as Kt
K∗t

= Y
Y ∗t

,

then K∗t ≤ Kt and N∗t ≤ Nt.

C.3. PROOFS AND PROPOSITIONS

Proposition 1 Price dispersion is bounded by one, St ≥ 1.

Proof. The aggregate price index is Pt =
[∫ 1

0
P 1−ε
t (i)

] 1
1−ε

. Dividing by Pt gives 1 =[∫ 1

0

(
Pt(i)
Pt

)1−ε
] 1

1−ε

. Defining vi,t =
(
Pt(i)
Pt

)1−ε
we get that

[∫ 1

0
vi,t

] 1
1−ε

= 1. Writing price

dispersion, St =

[∫ 1

0

(
Pt(i)
Pt

) −ε
1−θ

di

]1−θ

, in terms of vi,t yields v
−ε
1−ε

1
1−θ

i, =

[(
Pt(i)
Pt

)1−ε
] −ε

1−ε
1

1−θ

Thus, price dispersion can be written in terms of variable v as, S
1

1−θ
t =

∫ 1

0
v

ε
ε−1

1
1−θ

i,t And
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as ε
ε−1

1
1−θ > 1, Jensen’s inequality implies that

1 =

[∫ 1

0

vi,t

] ε
ε−1

1
1−θ

≤
∫ 1

0

v
ε
ε−1

1
1−θ

i,t = S
1

1−θ
t . (45)

Proposition 2 The ratio of price indexes, φn =

(
P∗t
Pt

)− ε
1−θ

[∫ 1
0

(
Pt(i)
Pt

) −ε
1−θ di

] T 1, for

φn



< 1 for π̄ = 0 & π̂t > 0,

for π̄ > 0 & π̂t > −π̄,

= 1 for P̄ = P ∗t = Pt(i) = Pt,

> 1 for π̄ = 0 & π̂t < 0,

for π̄ > 0 & π̂t < −π̄,

(46)

where P̄ is the deterministic steady state of price and π̂t is deviation of inflation from

its steady state.

Proof. The ratio φn < 1 if
(
P ∗t
Pt

)− ε
1−θ

<
∫ 1

0

(
Pt(i)
Pt

) −ε
1−θ

di. From the Proposition 1,
∫ 1

0

(
Pt(i)
Pt

) −ε
1−θ

di ≥

1. Thus, it must be true that if
(
P ∗t
Pt

)− ε
1−θ ≤ 1 then φn ≤ 1. This will hold for all cases

when P ∗t ≥ Pt. Because P ∗t
Pt

=
[

1−ζ(Πt)ε−1

1−ζ

] 1
1−ε

(equation (28)) for Πt ≥ 1 it holds that

P ∗t ≥ Pt In case of positive steady state inflation, π̄t > 0 the inflation deviation from its

steady state can reach π̂t > −π̄ for φn ≤ 1.
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C.4. CALIBRATION

Table 7: Calibration of the RS table 3 (best fit) model

Symbol Variable Value

β Discount factor 0.99

CRRA Risk aversion 110

IES Intertemporal elasticity 0.09

ε Elasticity of substitution 6

Frisch Frisch elasticity 0.28

φπ Response to inflation 0.53

φy Response to output 0.93

ρi it smoothing 0.73

ζ Price adjustment 0.76

Ḡ/Ȳ Government spending on output 0.17

ρG Autocorrelation Government spending shock 0.95

σG Volatility of Government spending shock 0.004

ρA Autocorrelation of TFP shock 0.95

σA Volatility of TFP shock 0.005

θρpi∗ Inflation target shock persistence 0.995

σπ∗ Volatility of inflation target shock 0.0007

ζπ∗ Inflation target adjustment 0.003

θ Capital share of output 1/3

Π̄ Steady state inflation 1.004

δ Capital depreciation 0.02

C.5. SENSITIVITY ANALYSIS TO RS MODEL

In what follows, we focus our analysis further on the dispersion of prices in the economy.

As the model parameters of RS were calibrated to match moments for the case of π̄ = 0,

it may be argued that the model might be not well calibrated, when simply allowing

for π̄ > 0 but leaving other model parameters unchanged. We first confirm that the

patterns documented in Table 2 hold across a wide range of parameter values.

Figure 10 shows how the mean of the inverse price dispersion changes over different

ranges of other model parameter values and orders of approximation. The first set

of panels shows the sensitivity of mean simulated price dispersion to changes in key
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model parameters for the case of zero trend inflation, for different orders of approxi-

mation (first, second, third-order approximations). Pink diamonds reflect the case of

the ’RS Table 3’-baseline parameterization. Whereas the mean simulated price disper-

sion is affected strongly by varying trend inflation (panel 1), including pushing S−1 to

the infeasible region bigger than one31, varying other model parameters does not affect

the simulated mean price dispersion drastically (and never pushes S−1 to an infeasible

region). Other than variations in trend inflation, only regions of relatively high elas-

ticities of substitution or high price rigidities lead to large costs from price dispersion

(of, e.g. more than 1%, reflected in S−1 falling below 0.99). The second set of panels

presents comparable figures for the case of positive trend inflation. Pink diamonds re-

flect the ’RS Table 3’-baseline parameterization, apart for steady-state inflation, which

now is π̄ = 1%. Since the accuracy of the mean price dispersion is already somewhat

compromised at π̄ = 1%, regions of relatively high elasticities of substitution or high

price rigidities quickly lead to problems (flat lines in the last two reported panels rep-

resent cases with indeterminate solutions). Variations in other key parameters continue

to leave mean price dispersion mostly unaffected.

D. RESULTS

Table 8: Taylor rule estimates for US

Study Period φpi φy

Taylor (1999) 1987 - 1997 1.53 0.77
Judd and Rudebusch (1998) 1987 - 1997 1.54 0.99

Clarida, Gali, and Gertler (2000) 1979 - 1996 2.15 0.93
Orphanides (2003) 1979 - 1995 1.89 0.18

Coibion and Gorodnichenko (2011) 1983 - 2002 2.2 0.43
Smets and Wouters (2007) 1966 - 2004 2.03 0.08

Jermann and Quadrini (2012) 1984 - 2010 2.41 0.121
Rotemberg and Woodford (1997) 1980 - 1995 1.27 0.08

Lubik and Schorfheide (2004) 1982 - 1997 2.19 0.3
Boivin and Giannoni 1979 - 2002 2.03 0

Calibrated models
Gaĺı (2015) - 1.50 0.125

Ascari and Sbordone (2014) - 2.00 0.125
Guerrieri and Iacoviello (2015) - 2.50 0.50

Basu and Bundick (2017) - 1.5 0.2
Levin et.al. (2000) - 1.27 0.08

31S−1 is bounded from above by one. See Proposition 1
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Figure 10: Parameters sensitivity in the RS (2012) model

Parameter sensitivity of RS (2012) model, case of zero trend inflation, π̄ = 0%
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Parameter sensitivity of RS (2012) model, case of positive trend inflation, π̄ = 1%
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Note: The first set of panels shows the sensitivity of the mean simulated price dispersion to changes in key
model parameters for the case of zero trend inflation, for different orders of approximation (first, second and
third order approximations). Pink diamonds reflect the case of the ’RS Table 3’-baseline parameterization.
The second set of panels presents analogous figures for the case of positive trend inflation. Flat lines in the
last two reported panels represent cases with indeterminate solutions.
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