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Abstract

We introduce a novel methodology, “parametric tilting,” for incorporating
external information into econometric model-based density forecasts. Unlike
traditional entropic tilting, which can generate unrealistic or unstable dis-
tributions under certain conditions, parametric tilting ensures more reliable
and numerically stable results. Our approach leverages the flexibility of the
skew-T distribution, which captures key moments of macroeconomic time
series, and minimizes the Kullback-Leibler divergence between the target and
model-based distributions. This method overcomes limitations of entropic
tilting, such as multimodal or degenerate distributions, providing a robust
alternative for policymakers and researchers aiming to integrate external
views into probabilistic forecasting frameworks.

JEL CLASSIFICATION SYSTEM: C14, C53, E52
KEYWORDS: Forecasting, Kullback-Leibler Information Criterion, Entropic
Tilting



Non-Technical Summary

In this paper, we present a new and robust approach to integrate external infor-
mation into model-based predictions. Economists and policymakers often need to
adjust their forecasts based on new data, such as higher-frequency observations,
expert surveys, or economic theory. One standard method for doing this is called
“entropic tilting”, introduced into the econometric literature by Robertson, Tall-
man, and Whiteman (2005). However, in real-world situations, this approach can
fail to produce accurate or reasonable results, especially when the new information
differs greatly from the model’s predictions.

Our proposed method, which we call “parametric tilting,” offers a solution to
these problems. Our proposed method leverages closed-form solutions for var-
ious moments of interest that are available for the skew-T distribution of Azza-
lini (2013). This distribution is highly flexible and can provide a better fit for com-
plex data patterns often seen in economic variables. The parameters of the skew-T
distribution are determined by minimizing the Kullback-Leibler divergence be-
tween the target and the original model-based distribution, subject to moment-
constraints that are specified by the researcher. The resulting optimization problem
allows the forecast to adjust more smoothly to the external information, generating
predictions that are more stable and easier to interpret.

We show through examples that parametric tilting succeeds in cases where the
traditional method struggles, making it a useful tool for economists and policy-
makers who need reliable forecasts to guide decisions in uncertain environments.
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1 Introduction

Accurate economic forecasting is critical for policymakers and researchers, espe-
cially in times of uncertainty when decisions must be based on the most reliable
available information. A common challenge in econometric forecasting is the need
to adjust model-based predictions to account for external information, such as
high-frequency data, expert opinions, or evolving economic conditions. This ad-
justment process is crucial for producing forecasts that accurately reflect the com-
plexities of real-world situations.

One widely used method to incorporate this external information is entropic
tilting, introduced by Robertson, Tallman, and Whiteman (2005). Entropic tilting
modifies the probability distribution generated by an econometric model to align it
with external constraints, typically by minimizing the Kullback-Leibler divergence
between the original and adjusted distributions.The original application embed-
ded theoretical constraints within the density forecasts of a Vector Autoregression
(VAR) model. Subsequent studies expanded on this methodology. For instance,
Giacomini and Ragusa (2014) applied entropic tilting to adjust a model-based
forecasting distribution, incorporating Euler conditions as constraints in their con-
sumption forecasts. Beyond constraints based on economic theory, entropic tilting
has been instrumental in integrating additional external information into model-
based density forecasts. An example is Kriiger, Clark, and Ravazzolo (2017), who
incorporates nowcasts into medium-term BVAR-based density forecasts. Similarly,
Banbura, Brenna, Paredes, and Ravazzolo (2021) used the Survey of Professional
Forecasters (SPF) data to adjust the model-based forecasts. This technique is also
particularly valuable for policymakers, as it facilitates the combination of model-
based density forecasts with expert judgment, thus enhancing the understanding
of risk balances when merging forecasts of different nature.

Although this method has proven conceptually simple and effective in some
cases, it frequently encounters significant challenges in practice. Specifically, en-
tropic tilting can produce multi-modal or degenerate distributions, particularly
when the external information significantly differs (measured by the Kullback-
Leibler divergence criteria) from the model’s predictions, or if the latter is non-
Gaussian. These issues can lead to unrealistic or unstable forecasts, limiting the
practical applicability of the method. An illustration of such impractical distribu-
tions is observable in Banbura, Brenna, Paredes, and Ravazzolo (2021), particularly
during the integration of external information in the COVID-19 period, a task that
proved challenging for the conventional entropic tilting method.

To address these limitations, we propose a new approach, called parametric

2
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tilting, which enhances the flexibility and robustness of traditional tilting by em-
ploying the skew-T distribution of Azzalini (2013) as a general distribution able to
capture key features of real-world economic data, such as asymmetry and heavy
tails. By minimizing the Kullback-Leibler divergence between the original model
and the skew-T distribution (including new moment conditions), our method en-
sures that the final forecast distribution accurately reflects the external information
while maintaining stability and coherence.

The advantages of parametric tilting are twofold: it provides a more reliable
adjustment process that avoids the pitfalls of entropic tilting, and it ensures that
the resulting forecast distribution remains well-behaved, even in cases where the
original data is non-Gaussian or the external information deviates substantially
from the model. Through various examples, we demonstrate that our approach
consistently outperforms traditional entropic tilting, offering a robust tool for pol-
icymakers and researchers who require reliable forecasts for decision-making.

Our paper is structured as follows. Section 2 reviews the foundations of en-
tropic tilting. Section 3 introduces our parametric tilting framework. Section 4
provides an example that compares our methodology with entropic tilting. Sec-
tion 5 concludes and provides an outlook on further research.
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2 Entropic tilting

Incorporating conditioning information into forecast distributions is a common
challenge in economic and financial modeling. Policymakers and researchers fre-
quently face the need to adjust model-based density forecasts based on external
data or expert judgment, such as nowcasts, survey data, or theoretical constraints.
Entropic tilting has emerged as a popular method to address this challenge by
allowing the re-weighting of forecast distributions to align with new informa-
tion while remaining as close as possible to the original distribution. Introduced
by Robertson, Tallman, and Whiteman (2005), entropic tilting applies Kullback-
Leibler divergence as a criterion for minimizing the difference between the ad-
justed and original distributions. This technique ensures that the updated forecast
incorporates the additional information without deviating unnecessarily from the
model’s inherent structure, offering a balance between model coherence and exter-
nal inputs.

Consider a density forecast for a set of n different variables. For each vari-
able that we would like to tilt, we start with the n X k matrix that contains the
model-based forecasting density - that is, k draws for each variable y;, each initially
associated with some weight 77;, = 1, ..., k that reflects the distribution 7r. In the fol-
lowing exposition we refer to the discrete probabilities of the draws using indexes
i while teh variable without index refers to the implied probability distributions.
The basic idea of tilting is to find a new set of weights, say 7, such that the re-
weighted distribution 77* satisfies a user-specified set of moment conditions, while
remaining “close” to the original 7. To measure the closeness of both probability
distributions, entropic tilting uses the Kullback-Leibler (KL) divergence criterion

defined as

k
7T,
K(rth,m) =) mflogA; where A;=—L. 1

(77, 717) 1; i 108 A P= (1)
In measure theory, the factor A; is called the Radon-Nikodym derivative while
econometricians might be more familiar with this expression as the likelihood ra-
tio. Hence, the new weights 71/ are found by minimizing K(7t7, 77;), subject to the
following constraints:

f >0, (2)
k
Y =1, 3)
i=1
k
; g (yi) = & (4)
4
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The first two constraints are trivial and imply that the new weights should be posi-
tive and should sum to 1, to ensure that the final weights also imply a valid density
function.

The third constraint imposes one or a set of moment restrictions, i.e. the
weighted average of a function of the draws from the forecasting distribution
should be equal to a desirable value, different from the corresponding sample
value. For example, tilting the original density to a new mean g := ji implies
¢(y;) = y;. To match the median d, the corresponding moment function for the
restrictions in the optimization problem is given by g(y;) = I(y; < d) — 0.5 where
I(y; < d) is an indicator function which takes value 1 when I(y; < d) is satisfied.
To match higher moments such as the variance or skewness, the respective mo-
ment functions are defined as ¢(v;) = (y; — fi)? and g(y;) = ((y; — 1) /s)® where
s is the empirical standard deviation of the original forecasting distribution. De-
pending on the number of assumptions a researcher is willing to make or the rich-
ness of information available, entropic tilting allows to include several moment
conditions by including constrains represented as empirical averages of the form
of equation (4) using different specifications of g(y).

To find the solution to the constrained optimization problem the Lagrangian
can be rewritten in terms of expectations under the original distribution 7t

min £ = Ex[A;log (Ai)] = K'Ex[Ai(8(yi) = 8)] = PEx[Ai — 1] )
where ‘
Exly] = Zﬂiyi-
i=1
Equation (5) gives the First Order Conditions:
oL(A; -
ag\, )14 10g(A) ~ 7 (5(0) ) ~ 1 =0 (6)

which implies that the Radon Nikodym derivative is proportional to

A; o< exp (Kg(4). )

Therefore, to compute A; it is crucial to first solve for the optimal multipliers «,
which is given as the solution to the set of moment conditions

Exlexp ('g(yi))(g(yi) — §)] = 0. (8)
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In practice « is found numerically as:

k
£ = argmin Z miexp(x'[g(yi) — ) 9)
i=1
Eventually, combining equation (7) and the constraint of equation (3) yields that
draws from the original distribution 7t are resampled using an importance sam-
pling step with corresponding weights

 exp(Ks(y)
A= Elexp (W) (10

to change the distribution of the draws to the tilted density 7t*. Given an empirical
set of draws of the model based distribution, this implies that the probabilities of
the tilted distribution can be calculated using

o= T exp(x'g(yi)) 1)

i mexp(i'g(yi))

This reveals the two difficulties that can arise in practice linked to the support of
the proposal and target densities 7t and 7*: first of all, given the definition of the
Radon-Nikodym derivative A;, 7t has to assign non-zero probabilities to the same
set as 71. This means that an event that is impossible under 7 is also impossible
under 7t* such that the ratio is well defined for all y;.! If the constraints require
a high probability mass in a region where 7 has low probabilities and therefore
no sampled draws, the Radon-Nikodym derivative A; does not exist and the opti-
mization for the lagrange multipliers x will not be successful or yield unsatisfying
results.

Second, the quality of the importance sampling step also depends on the sup-
port of the proposal and target densities 7t and 7t*. Hence, if the imposed moments
of 7t* are too far away from the original density, the resampling step results in a
degenerate distribution 7%, even if a solution for A; exists. To show this more
formally, consider the Effective Sample Size (ESS)

1
ESS = ——5 12
EA[A7] (12)
a common measure to gauge the quality of an importance sampler. The ESS quan-
tifies how efficiently expectations under 77* can be estimated using samples drawn
from 7t with values between 0 < ESS < 1. A value close to 1 indicates that the

This condition is formally known as as absolute continuity
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quality of the importance sampling approximation of 77* is high while a value close
to 0 indicates a deteriorating approximation. Starting from the inverse and rear-
ranging terms yields

1 v [P (g (i) (13)
|TE mi(exp (g (v)) |

ESS
L milexp(r'g(yi)))? — | Ly (s exp (W' (vi)) |
=1+ (14)

[T (mrexp (g ()

2

2
ex ! i)) — 5;2 i ex ! i
g TR0 Tha(n P(Xsly )] )
= TE L (exp (g (y:)) |
=14+ i 7 [A; — 1) (16)

i=1

Therefore the Inefficiency Ratio of the resampling step in entropic tilting is given
by
1
ESS = - 5 (17)
1+ Zi:l Tt [Ai — 1]

From expression (17), it follows that when the weights of the two distributions,
7t and 71%, are similar, the terms [A; — 1]2 remain small, and the inefficiency ratio
approaches one. In contrast, substantial differences between the weights 7r; and
77 increase the dispersion of the importance weights, thereby enlarging the sum
over [A; — 1]? and reducing the effective sample size (ESS). Consequently, when
the tilted distribution 7* implied by the moment conditions in (8) departs sub-
stantially from the baseline distribution 7t of the model, the importance sampling
approximation deteriorates. This degradation reflects the growing dissimilarity
between the two distributions, which manifests in a smaller ESS and, hence, lower
efficiency of the reweighted sample. While on the one hand, failure of entropic
tilting could simply be interpreted as an indication of unrealistic or misspecified
scenarios. On the other hand, it is of great value for policy makers and researchers
to retain the ability to also incorporate new and atypical information in extreme
circumstances e.g. during crises times. Naturally, we consider the method pro-
posed in this paper as a suggestion to target the later case. In the next subsection,
we illustrate some of these caveats.
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2.1 Entropic tilting: A caveat

A well-known result in the literature is that, if the original distribution is Gaussian,
the problem of tilting it towards a different value of the mode (mean/median)
and/or the variance has a closed-form solution, such that the final distribution is
also Gaussian with an analytical solution for the mode and the variance.

Figure 1 further illustrates this an example of a Gaussian distribution. The
original distribution in blue has a mean (mode/median) of 2.4, and we would
like to tilt it to a value of 1.7. Entropic tilting works as expected and changes the
location of the original distribution to the tilted distribution in red.

007 0.07
0.06 0.08
005 0.05
0.04 - 0.04 -
0.03F 0.03
o.oz2F o.o2 F
0.01F 0.01
D-—Z o = & =] D-Z o z 4 =]

Figure 1: Tilting a Gaussian distribution with entropic tilting

But, when the original distribution is non-Gaussian, closed-form solutions
may not be available. The non-parametric approach could still be able to find a
solution to the mathematical problem described above, but it is not ensured that
the final distribution is for example uni-modal, 2 or that the problem finds a well-
balanced set of new weights, avoiding degeneracy. This problem is exacerbated if
the target mean is very far from the support of the original empirical distribution.
In that case, the latter does not have enough support for the new target values and
the re-weighting faces numerical issues resulting in a degenerate distribution ¢*.

In Figure 2 we can see an example of a distribution with non-Gaussian fea-
tures, as it incorporates fat tails and is not fully symmetric. In this case, entropic
tilting produces a bimodal distribution when imposing a mean of 1.7 compared to
the original of 2.4, as the final mean is far away from the original one. This solu-
tion, given the small deviation from Gaussianity in the original distribution, may
be unreasonable for many problems in economics.

2 A non uni-modal distribution would not be by itself a problem if well-grounded in theory, see
Shiller (2000) and his work on market bubbles for example, but here the non uni-modality would
be just of a technical nature.
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Figure 2: Tilting a non-Gaussian distribution with entropic tilting

3 Towards a robust approach. Parametric tilting

In addressing the challenges inherent in the non-parametric approach previously
outlined, our proposed strategy involves restructuring the optimization problem
to yield a final density with a parametric form. The central issue with the non-
parametric method is its somewhat opaque nature; it functions as a "black box’
that merely re-weights the original density in an attempt to achieve the imposed
moment conditions. This process does not account for the final density’s shape.
As demonstrated earlier, it is entirely possible for this method to meet a specified
mean value while inadvertently producing a possibly unreasonable distribution
and instability during resampling.

To circumvent this issue, we slightly reframe the optimization problem. Di-
verging from the previous approach based on re-weighing the empirical draws
with new weights directly determined from the optimization in equation (5), we
consider the KL divergence in terms of parametric densities to impose the con-
straints:

KL(PIQ) = 3 Py tog (£ )

=R

here y; corresponds to the value of each draw in the model-based forecasting den-
sity, P(y;) is the pdf of the original density, and Q(y;) is the parametrically tilted
parametric density that we will use to impose the constraints. Opting for a para-
metric density, as opposed to directly adjusting the weights, affords researchers
greater control over the final density’s shape and facilitates the assurance of uni-
modality, if so desired. We will delve into the specifics of our chosen target density
and discuss approaches for scenarios where the original density is unknown.
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3.1 A skew-t distribution

To provide a flexible and theoretically well-behaved density, we propose using a
skew-t distribution Azzalini (2013) as the target distribution in the KL divergence.’
The skew-t distribution is a flexible, parametric density that allows us to have fat
tails as well as asymmetries that can be controlled by the four parameters defin-
ing the distribution. Therefore, it is possible to find solutions to the optimization
problem that reflect the asymmetric or leptokurtic behavior of the target densi-
ties and can thereby accommodate a variety of assumptions.Additionally, with
the recent introduction of the Macro at Risk literature by Adrian, Boyarchenko,
and Giannone (2019), the skew-t distribution has gained wide popularity among
researchers to capture non-normal features of macroeconomic variables (see for
example Lépez-Salido and Loria (2024) or De Santis and Van der Veken (2020)).

The skew-t distribution can be parameterised as follows. First, we write that
a variable Y has a skew-t (ST) distribution,

Y ~ ST(¢, w,a,v) (19)

where ¢ is a location parameter, w is the scale, « is the slant parameter that deter-
mines the skewness of the distribution, and v is the degrees of freedom.

Second, the pdf of Y can be written in terms of a standardized skew-t distri-
bution. Define y = w™!(y — &). Then the density function at y is w ™ 't(y; &, v),
where

tHy,a,v) = 2t(y; v) T (ay; v) (20)

where t(y; v) is the pdf of a standard t-distribution with degrees of freedom v and
T(.;v) denotes the cumulative distribution function of a t-distribution. Note that
if the degrees of freedom are large enough (v — o0) and & = 0, the distribution
collapses to a Gaussian distribution.

For our purposes, it is important to note that the ST distribution has a closed
form solution for different moments such as the mean, the variance, the skew-
ness, and for the mode (see Azzalini (2013)). These four moments are non-linear
functions of the four parameters that determine the shape of the distribution,

3In principle, many other distributions could be used, for example, a skew normal distribution.
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(¢, w,a,v). Define first,

V(051 —1))

by = (21)
vI'(0.5v)
«
0= V14 a? %)
v
o, = \/v — - (by6)2 (23)

where I'(...) represents the Gamma function. Then, we can define the moments of
the distribution as,

u=EWy)+wbd, v>1 (24)

0? =var(y) = w??, v>2 (25)
b0 3—6° 3

v = skew(y) = 27 [V(((V —3 ) _ o _1/2 +2(bv5)2:| , V>3 (26)

Furthermore, the mode of the skew-t distribution is unique and given by

m = mode(y) = € + yow (27)
with 1
Yo = argmin (y\/v +1T(w(y);v+1) — t(w(% )W) (28)
and w(y) defined as
B v+1
w(y) = ay vt y2 (29)

3.2 Tilting towards a skew-t distribution

With all the elements in hand, now we can define our parametric tilting problem
as follows,

min ZP Vi log( (Z;))) (30)

cj,wtxvl

11
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Subject to one or more restrictions on the moments of the distribution,

p=p (31)
c=0 (32)
Y= (33)
m=m (34)

That is, rather than stating the problem in terms of finding the final weights,
we minimize the KL divergence over the parameters that determine the shape of
the ST distribution while satisfying the moment constraints we want to impose.
Several comments are in order. First, we define the KL divergence in terms of
discrete densities. This is because the original distribution is generally a set of
empirical draws from a model or a combination of models. Thus, we need to
evaluate the KL-divergence for each of the draws. Second, we will not always
know the shape of the original distribution, P(y;), and thus, it would not be easy
to evaluate it.

If the original distribution P(y;) is known, we can just discretize the support of
the two density functions P(Y) and Q(Y) around the values y; € Y from the origi-
nal model. With those values in hand, we can easily evaluate the KL divergence in
the minimization problem to impose the constraint.

However, if the original distribution is unknown, we can find a discrete ap-
proximation of P(y;) using a histogram with appropriate scaling and bandwidth
selection to accurately cover the range of the original draws.* Evaluating the pdf of
the skew-t distribution over the grid obtained from the bin edges of this histogram
then yields the corresponding values for the discrete approximation of the target
ST (y;). Note that it is important to align the widths of the histogram approxima-
tion for both densities to ensure consistency in the optimization routine as well as
in the construction of the resampling weights in the final steps.

We eventually find the solution to the problem numerically using standard
solvers.” Note however that we need to keep the degrees of freedom of the distri-
bution, v, as a discrete value. Therefore, we proceed as follows. We construct first

4To obtain an approximation of a probability density that integrates to 1 from a standard his-
togram that counts the frequency of observations, each bin needs to be re-scaled by the bin value
b; = %, where k is the number of observations, c; is the number of elements in and w; is the width
of the i*" bin.

>Due to the closed form solution of the ST distribution, we can easily solve the optimization
problem using standard solvers available in common programming languages such as MATLAB,
Python or R.
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a grid for the degrees of freedom. For each value of the grid, we obtain optimal
values for the location ¢, scale & and slant parameters & that minimize the KL di-
vergence, subject to the moment constraints that we would like to impose. Then,
we select the minimum value out of the grid and the associated parameters of the
optimized skew-t distribution.

In the last step of our problem, we need to finally re-sample the original den-
sity forecast, according to the new weights based on the importance ratio of the
model based density and the fitted ST distribution.In case the original distribution
needs to be represented as a histogram, the importance weights are calculated for
each bin resulting in so called histogram reweighting.®

4 Application: from theory to practice

4.1 Theory: Exploring the Limits

As an initial example, we consider the same problem as in the previous section.
First, we consider a parametric tilting in which we impose only the mode of the
final distribution. Compared to the non-parametric tilting approach, we should
emphasize that in this case, given that the skew-t distribution has a closed form
solution for the mode, we do not need to make any other assumption about the
mean or the median of the distribution.

First, Figure 4 shows both the original and the tilted distribution that come
out from our parametric minimization problem. Given that the final mode is far
away from the original model-based one, we see that the problem endogenously
yields a skewed distribution which would signal upside risks. Moreover, the final
distribution is now well behaved and unimodal.

We can also consider imposing additional moment restrictions. For example,
on top of the mode, policy makers might want to impose that the mean of the tar-
get distribution is the same as the model-based one (Figure 3). In this sense, policy
makers would have in mind that the most likely scenario is still their judgemen-
tal forecast, but that the expectation is the model-based one, showing asymmetric
risks.

®While histogram reweighting has a long tradition in physics, similar techniques have also re-
cently been proposed in economic applications such as portfolio allocation or analyzing demo-
graphic parity by Chakraborty, Bhattacharya, and Pati (2024).
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Figure 3: Tilting the mode of a non-Gaussian distribution with parametric tilt-
ing

Another possibility is that policymakers might want to keep the original
model-based uncertainty (Figure 4). In this case, it is therefore possible to restrict
both the mode and the variance of the target distribution.
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0.1

Figure 4: Pushing the limits: Tilting mode, mean and variance of a non-Gaussian
distribution with parametric tilting

In this example, tilting also towards the mean does not change the shape of
the final distribution in a meaningful way. However, keeping the original variance
reduces the weight of extreme values in the right tails of the distribution. At the
end, this would be a choice of the forecaster, which could be also a result of a
previous evaluation of the forecast performance under different alternatives.

Finally, we consider a more extreme case, to show that our parametric tilting
approach can handle somewhat more difficult problems than the non-parametric
approach. In the original problem, we tilted the mode of the distribution from
2.4 to 1.7. We now reduce the target mode to 1.1, that is, further away to the left
from the original one. Figure 4 shows that even in this case, our robust approach
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can find the solution to the problem, although the final distribution is significantly
more skewed than in the previous case.

4.2 Practice: Tilting to the SPF during Covid

We now illustrate how our proposed method would have performed in a real-time
setting. In Figure 5, we replicate Figure 5 from the updated version of Banbura,
Brenna, Paredes, and Ravazzolo (2021), where the authors assess how the tradi-
tional tilting method would have operated during the onset of the COVID-19 pan-
demic.” In our figure, we display the one-year-ahead real GDP growth density
forecast obtained from three approaches that are able to incorporate external infor-
mation: the original optimal pool combination, the entropic tilting method and the
parametric tilting method proposed in this paper.

We focus on the forecast for the fourth quarter of 2020, produced during the
first quarter of 2020. At that time, participants in the Survey of Professional Fore-
casters (SPF) had already begun to observe the economic impact of COVID-19,
whereas the models included in the optimal pool had not yet incorporated any
data reflecting these developments. Starting with the forecast for 2020Q4, the un-
certainty assessment of SPF respondents adjusts to the new circumstances, and
the realised outcomes (around minus 5 percent GDP growth) lie well within the
support of the SPF predictive distribution at the time.> By contrast, the forecast
from the Bayesian VARs combination (optimal pool depicted by the blue line in all
panels) for 202004 fails to reflect the unfolding crisis, as the underlying data still
contained limited information about the pandemic.

SPF participants reported a mean forecast of 2.8 percent negative growth, with
an associated variance of around 15.3. As discussed in Banbura, Brenna, Paredes,
and Ravazzolo (2021), there are at least three ways to incorporate this information
using entropic tilting. The first approach is to include the SPF as an additional
model within the combination (black line in top panel). The second approach is to
tilt the predictive distribution towards the SPF mean only (black line bottom left
panel). The third approach is to tilt the distribution towards both the SPF mean
and variance (black line in bottom right panel).

An important limitation of the tilting procedure becomes evident when in-
specting the tilted predictive distributions for 2020Q4 in the two bottom panels.
When the target moments used for tilting are substantially distant from those im-

7We are very thankful to the authors for providing to us the replication codes.
8See top-left panel in Figure 5 of Banbura, Brenna, Paredes, and Ravazzolo (2021).
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Figure 5: One-year-ahead real GDP growth density forecasts. Parametric vs en-
tropic tilting with restrictions on the mode, mean and variance.

plied by the original distribution, resulting in a lack of overlapping support, the
tilted distribution can degenerate or exhibit undesirable properties, such as bi-
modality.

In contrast, our proposed method (red lines in Figure 5), across its different
specifications, succeeds in combining the external information while preserving a
smooth parametric form. In the top panel, we impose the SPF mean as the mode of
the new distribution. This adjustment implies that the most likely scenario corre-
sponds to a negative GDP growth rate, accompanied by positive skewness, as the
density of the original optimal pool still exhibited positive growth. Conversely,
when the SPF mean is imposed as the mean of the parametric distribution, the
mode remains closer to that of the original distribution but the left tail becomes
considerably fatter, indicating heightened downside risks. Finally, imposing both
the mean and variance of the SPF shifts the mode of the resulting distribution fur-
ther toward zero, while preserving the pronounced left fat tail.

Overall, these three specifications illustrate how the parametric tilting method
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behaves depending on how the practitioner incorporates the external information.

5 Conclusion

In this paper, we introduced a new methodology called parametric tilting to ad-
dress the limitations found in traditional entropic tilting methods, particularly
their struggles with producing reasonable distributions in practical applications.
Parametric tilting offers a more robust and flexible approach to integrating exter-
nal information into model-based density forecasts, providing solutions that are
more reliable and numerically stable.

Parametric tilting not only ensures that any distribution can be centered
around a specified forecast baseline but also guarantees unimodality, which is a
common requirement in economic and policy applications. It retains the capacity
to faithfully reflect the balance of risks inherent in the original distribution while
offering the flexibility to incorporate various moments (mean, variance, skewness)
of the original distribution into the final one. This flexibility makes it highly adapt-
able to the diverse requirements faced by policymakers and researchers in scenar-
ios such as risk assessments, nowcasting, and scenario analysis.

As demonstrated in our application, the parametric tilting method success-
tully generates well-behaved distributions even when external constraints are im-
posed far from the original model distribution. This includes extreme cases where
the original distribution may exhibit non-Gaussian features such as fat tails and
asymmetry. By leveraging the skew-t distribution of Azzalini (2013), our approach
can capture complex behaviors often observed in macroeconomic time series, en-
suring that the final forecast remains coherent with both the external information
and the model’s internal structure.

In contrast to non-parametric methods, which often function as “black boxes”
that re-weigh samples without guaranteeing the shape or behavior of the final dis-
tribution, parametric tilting provides transparency and control over the final out-
come. By framing the optimization in terms of Kullback-Leibler divergence and
selecting a parametric target distribution, researchers can better manage the re-
sulting forecast’s properties, such as skewness and tail behavior, which are critical
for realistic scenario analysis and policy decision-making.

Given its versatility and robustness, parametric tilting should become a valu-
able tool in the forecaster’s toolkit. It opens avenues for future research to explore
further enhancements, such as incorporating more sophisticated external informa-
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tion sources or extending the methodology to multi-dimensional frameworks. By
doing so, it can further contribute to the development of more accurate and reliable
forecasting models in both theoretical and practical settings.
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